首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
备考2022高考数学二轮复习选择填空狂练二十五模拟训练五理
备考2022高考数学二轮复习选择填空狂练二十五模拟训练五理
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
模拟训练五一、选择题1.[2022·衡水中学]设集合,集合,则集合()A.B.C.D.2.[2022·衡水中学]已知复数(为虚数单位),若复数的共轭复数的虚部为,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.[2022·衡水中学]若,,,的平均数为3,方差为4,且,,,,,则新数据,,,的平均数和标准差分别为()A.B.C.28D.44.[2022·衡水中学]已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A.3B.C.D.5.[2022·衡水中学]运行如图所示程序,则输出的的值为()A.B.C.45D.8\n6.[2022·衡水中学]已知,,则的值为()A.B.C.D.7.[2022·衡水中学]如图是某几何体的三视图,则该几何体的体积为()A.6B.9C.12D.188.[2022·衡水中学]已知,点在线段上,且的最小值为1,则的最小值为()A.B.C.2D.9.[2022·衡水中学]函数的图像大致是()A.B.C.D.10.[2022·衡水中学]若抛物线的焦点是,准线是,点是抛物线上一点,则经过点、且与相切的圆共()A.0个B.1个C.2个D.4个11.[2022·衡水中学]设函数.若,且,则的取值范围为()A.B.C.D.12.[2022·衡水中学]对于函数和,设,,若存在,,使得8\n,则称与互为“零点相邻函数”.若函数与互为“零点相邻函数”,则实数的取值范围是()A.B.C.D.二、填空题13.[2022·衡水中学]若数列是等差数列,对于,则数列也是等差数列.类比上述性质,若数列是各项都为正数的等比数列,对于时,数列也是等比数列,则__________.14.[2022·衡水中学]函数的图象在点处的切线方程是,则__________.15.[2022·衡水中学]已知是区间上的任意实数,直线与不等式组表示的平面区域总有公共点,则直线的倾斜角的取值范围为__________.16.[2022·衡水中学]设锐角三个内角,,所对的边分别为,,,若,,则的取值范围为__________.8\n答案与解析一、选择题1.【答案】C【解析】由题意得,,∴,∴,故选C.2.【答案】A【解析】由题意得,∴,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.3.【答案】D【解析】∵,,,的平均数为3,方差为4,∴,.又,,,,,∴,,∴新数据,,,的平均数和标准差分别为,4.故选D.4.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则,8\n求解关于实数,的方程可得.本题选择C选项.5.【答案】B【解析】程序是计算,记,,两式相加得,.故,故选B.6.【答案】A【解析】∵,,∴,∴,.∴,故选A.7.【答案】B【解析】由已知中的三视图可得:该几何体是两个三棱柱形成的组合体,下部的三棱柱,底面面积为,高为1,体积为6;上部的三棱柱,底面面积为,高为1,体积为3;故组合体的体积,故选B.8.【答案】B【解析】∵,∴点在线段的垂直平分线上.∵点在线段上,且的最小值为1,∴当是的中点时最小,此时,∴与的夹角为,∴,的夹角为.又8\n,当且仅当时等号成立.∴的最小值为3,∴的最小值为,故选B.9.【答案】A【解析】由题意可得,,∵,∴函数为奇函数,其图象关于原点对称,∴排除选项C.又,∴当时,,单调递增,∴排除选项B和D.故选A.10.【答案】D【解析】因为点在抛物线上,所以可求得.由于圆经过焦点且与准线相切,所以由抛物线的定义知圆心在抛物线上.又圆经过抛物线上的点,所以圆心在线段的垂直平分线上,故圆心是线段的垂直平分线与抛物线的交点.结合图形知对于点和,线段的垂直平分线与抛物线都各有两个交点.所以满足条件的圆有4个.故选D.11.【答案】B【解析】(特殊值法)画出的图象如图所示.结合图象可得,当时,;当时,,8\n满足.由此可得当,且时,.故选B.12.【答案】D【解析】根据题意,,满足与互为“零点相邻函数”,,又因为函数图像恒过定点,要想函数在区间上有零点,需,解得,故选D.二、填空题13.【答案】【解析】等差数列中的和类别为等比数列中的乘积,是各项的算术平均数,类比等比数列中是各项的几何平均数,因此.14.【答案】【解析】由导数的几何意义可知,又,所以.15.【答案】【解析】由题意知直线的方程即为,∴直线的斜率为,且过定点.画出不等式组表示的可行域如图所示.由解得,故点,此时.当时,直线的方程为,即,8\n由解得,故点,如图所示.结合图形可得要使直线与不等式组表示的平面区域总有公共点,只需满足.∴直线的斜率,∴直线的倾斜角的取值范围为.16.【答案】【解析】由及余弦定理得,∴,∴.又为锐角三角形,∴.由正弦定理得,∴.由得,∴,∴.∴的取值范围为.8
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
备考2022高考数学二轮复习选择填空狂练二十四模拟训练四理
备考2022高考数学二轮复习选择填空狂练二十六模拟训练六理
备考2022高考数学二轮复习选择填空狂练二十八模拟训练八理
备考2022高考数学二轮复习选择填空狂练二十五模拟训练五文
备考2022高考数学二轮复习选择填空狂练二十二模拟训练二理
备考2022高考数学二轮复习选择填空狂练二十九模拟训练九理
备考2022高考数学二轮复习选择填空狂练二十三模拟训练三理
备考2022高考数学二轮复习选择填空狂练二十七模拟训练七理
备考2022高考数学二轮复习选择填空狂练二十一模拟训练一理
备考2022高考数学二轮复习选择填空狂练三十模拟训练十理
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 23:40:33
页数:8
价格:¥3
大小:303.41 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划