首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2023高考数学统考一轮复习第11章算法初步推理与证明第3节直接证明与间接证明数学归纳法教师用书教案理新人教版202303081189
2023高考数学统考一轮复习第11章算法初步推理与证明第3节直接证明与间接证明数学归纳法教师用书教案理新人教版202303081189
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
直接证明与间接证明、数学归纳法[考试要求] 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.1.直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.2.间接证明——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.3.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.( )(2)综合法是直接证明,分析法是间接证明.( )(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )\n(4)用反证法证明结论“a>b”时,应假设“a<b”.( )[答案] (1)× (2)× (3)× (4)×二、教材习题衍生1.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验n等于( )A.1B.2C.3D.4C [凸n边形边数最小时是三角形,故第一步检验n=3.]2.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数B [“至少有一个”的否定为“都不是”,故B正确.]3.若P=+,Q=+(a≥0),则P,Q的大小关系是( )A.P>QB.P=QC.P<QD.不能确定A [假设P>Q,只需P2>Q2,即2a+13+2>2a+13+2,只需a2+13a+42>a2+13a+40.因为42>40成立,所以P>Q成立.故选A.]4.已知数列{an}满足an+1=a-nan+1,n∈N*,且a1=2,则a2=,a3=,a4=,猜想an=.3 4 5 n+1 [易得a2=3,a3=4,a4=5,故猜想an=n+1.]考点一 综合法的应用 掌握综合法证明问题的思路(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.[典例1] 设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ac≤;\n(2)++≥1.[证明] (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,得a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为a,b,c均为正数,+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c,所以++≥1.[母题变迁]本例的条件不变,证明a2+b2+c2≥.[证明] 因为a+b+c=1,所以1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,因为2ab≤a2+b2,2bc≤b2+c2,2ac≤a2+c2,所以2ab+2bc+2ac≤2(a2+b2+c2),所以1≤a2+b2+c2+2(a2+b2+c2),即a2+b2+c2≥.点评:(1)不等式的证明常借助基本不等式,注意其使用的前提条件“一正、二定、三相等”;(2)应用重要不等式a2+b2≥2ab放缩时要注意待证不等式的方向性.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.(1)求证:a,b,c成等差数列;(2)若C=,求证:5a=3b.\n[证明] (1)由已知得sinAsinB+sinBsinC=2sin2B,因为sinB≠0,所以sinA+sinC=2sinB,由正弦定理,得a+c=2b,即a,b,c成等差数列.(2)由C=,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,即5a=3b.考点二 分析法的应用 分析法证明问题的思路及适用范围利用分析法证明问题,先从结论入手,由此逐步推出保证此结论成立的充分条件;当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.[典例2] 已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:+=.[证明] 要证+=,即证+=3,也就是+=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得b2=c2+a2-2accos60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.点评:(1)用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论.(2)证明较复杂的问题时,可以采用两头凑的办法,如本例中,通过分析法找出与结论等价(或充分)的中间结论“c2+a2=ac+b2”,然后通过综合法证明这个中间结论,从而使原命题得证.若a,b∈(1,+∞),证明<.\n[证明] 要证<,只需证()2<()2,只需证a+b-1-ab<0,即证(a-1)(1-b)<0.因为a>1,b>1,所以a-1>0,1-b<0,即(a-1)(1-b)<0成立,所以原不等式成立.考点三 反证法的应用 用反证法证明问题的步骤[典例3] 设a>0,b>0,且a+b=+.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.[证明] 由a+b=+=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.点评:(1)当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.(2)在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等.\n等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.(1)求数列{an}的通项公式an与前n项和Sn;(2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.[解] (1)设等差数列{an}的公差为d.由已知得所以d=2,故an=2n-1+,Sn=n(n+)(n∈N*).(2)证明:由(1)得bn==n+,假设数列{bn}中存在三项bp,bq,br(p,q,r∈N*,且互不相等)成等比数列,则b=bpbr.即(q+)2=(p+)(r+),所以(q2-pr)+(2q-p-r)=0,因为p,q,r∈N*,所以所以=pr,(p-r)2=0,所以p=r,与p≠r矛盾,所以数列{bn}中任意不同的三项都不可能成等比数列.考点四 数学归纳法的应用 1.应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.2.利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.[典例4] (2019·浙江高考)设等差数列{an}的前n项和为Sn,a3=4,a4=S3.数列{bn}满足:对每个n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn成等比数列.(1)求数列{an},{bn}的通项公式;(2)记cn=,n∈N*,证明:c1+c2+…+cn<2,n∈N*.\n[解] (1)设数列{an}的公差为d,由题意得解得a1=0,d=2,∴an=2n-2,n∈N*.∴Sn=n2-n,n∈N*.∵数列{bn}满足:对每个n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn成等比数列,∴(Sn+1+bn)2=(Sn+bn)(Sn+2+bn),解得bn=(S-SnSn+2),即bn=n2+n,n∈N*.(2)证明:cn===,n∈N*,用数学归纳法证明:①当n=1时,c1=0<2,不等式成立;②假设当n=k(k∈N*)时不等式成立,即c1+c2+…+ck<2,则当n=k+1时,c1+c2+…+ck+ck+1<2+<2+<2+=2+2(-)=2,即n=k+1时,不等式也成立.由①②得c1+c2+…+cn<2,n∈N*.点评:用数学归纳法证明与n有关的不等式,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化.已知f(n)=1++++…+,g(n)=-,n∈N*.(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.[解] (1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n=2时,f(2)=,g(2)=,所以f(2)<g(2);当n=3时,f(3)=,g(3)=,\n所以f(3)<g(3).(2)由(1)猜想,f(n)≤g(n),用数学归纳法证明.①当n=1,2,3时,不等式显然成立.②假设当n=k(k>3,k∈N*)时不等式成立,即1++++…+<-,则当n=k+1时,f(k+1)=f(k)+<-+.因为-=-=<0,所以f(k+1)<-=g(k+1).由①②可知,对一切n∈N*,都有f(n)≤g(n)成立.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年高考数学一轮复习第七章不等式推理与证明4直接证明与间接证明课件(新人教A版理)
2022年高考数学一轮复习第7章不等式推理与证明4直接证明与间接证明课件(人教A版)
【高考讲坛】2023高考数学一轮复习 第6章 第5节 直接证明与间接证明课后限时自测 理 苏教版
【高考总动员】2023高考数学大一轮复习 第11章 第3节 直接证明与间接证明课时提升练 文 新人教版
【红对勾】(新课标)2023高考数学大一轮复习 6.6直接证明与间接证明课时作业 理.DOC
【名师伴你行】(新课标)2023高考数学大一轮复习 第11章 第3节 直接证明与间接证明课时作业 理
2023高考数学统考一轮复习课后限时集训73直接证明与间接证明数学归纳法理含解析新人教版202302272184
2023高考数学统考一轮复习第11章算法初步推理与证明第2节合情推理与演绎推理教师用书教案理新人教版202303081188
2023高考数学统考一轮复习第11章算法初步推理与证明第1节算法与程序框图教师用书教案理新人教版202303081187
2023高考数学一轮复习第12章推理与证明算法复数第3节算法初步课时跟踪检测理含解析20230233197
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2022-08-25 17:30:44
页数:8
价格:¥3
大小:322.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划