首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2023高考数学统考一轮复习第11章算法初步推理与证明第2节合情推理与演绎推理教师用书教案理新人教版202303081188
2023高考数学统考一轮复习第11章算法初步推理与证明第2节合情推理与演绎推理教师用书教案理新人教版202303081188
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
合情推理与演绎推理[考试要求] 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理.1.合情推理:前提为真,结论可真可假类型定义特点归纳推理根据一类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理:前提为真,结论必为真(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )[答案] (1)× (2)√ (3)× (4)×二、教材习题衍生1.已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an\n的表达式是( )A.an=3n-1 B.an=4n-3C.an=n2D.an=3n-1C [a1=1,a2=4,a3=9,a4=16,猜想an=n2.]2.“因为指数函数y=ax是增函数(大前提),而y=是指数函数(小前提),所以函数y=是增函数(结论)”,上面推理的错误在于( )A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提错误导致结论错误A [“指数函数y=ax是增函数”是本推理的大前提,它是错误的.因为实数a的取值范围没有确定,所以导致结论是错误的.]3.如图①有面积关系:=,则由图②有体积关系:=.图① 图② [平面上的面积可类比到空间上的体积.==.]4.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为.b1b2…bn=b1b2…b17-n(n<17,n∈N*) [利用类比推理,借助等比数列的性质,b=b1+n·b17-n,可知存在的等式为b1b2…bn=b1b2…b17-n(n<17,n∈N*).]考点一 归纳推理\n 与数字或式子有关的推理 (1)与数字有关的数阵(或数表)问题,要观察数字特征,数字与序号间的关系及其变化规律,一般要结合数列知识求解.(2)与式子有关的问题,要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律,归纳推理得出一般结论.[典例1-1] (1)将正整数依次排列如下:123456789101112131415161718192021………………由表知第5行第3列的数是13,若第2020行第2列的数是a,则a的各位数字中,数字0的个数为( )A.0 B.1 C.2 D.2(2)观察下列式子,ln2>,ln3>+,ln4>++,…,根据上述规律,第n个不等式应该为.(1)B (2)ln(n+1)>++…+ [(1)由题意知,前n行中共有1+2+3+…+n=个整数,故第2019行中最后一个数:=2039190,第2020行中第2列的数为:2039190+2=2039192,故0的个数为1,故选B.(2)根据题意,对于第一个不等式,ln2>,则有ln(1+1)>,对于第二个不等式,ln3>+,则有ln(2+1)>+,对于第三个不等式,ln4>++,则有ln(3+1)>++,依此类推:\n第n个不等式为:ln(n+1)>++…+.] 与图形变化有关的推理 与图形变化有关的推理,其解题切入点:(1)从图形的数量规律入手,找到数值变化与序号的关系;(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,结构、数值发生了怎样的变化,探求规律.[典例1-2] 如图所示,第n个图形是由正n+2边形拓展而来(n=1,2,…),则第n-2(n≥3)个图形共有个顶点.① ② ③ ④n2+n [第一个图有3+3×3=4×3个顶点;第二个图有4+4×4=5×4个顶点;第三个图有5+5×5=6×5个顶点;第四个图有6+6×6=7×6个顶点;……第n个图有(n+3)(n+2)个顶点,第n-2个图形共有n(n+1)=n2+n个顶点.]点评:与图形变化有关的推理常借助特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.1.《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是( )\nA.18B.17C.16D.15B [由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17,故选B.]2.分形理论是当今世界十分风靡和活跃的新理论、新学科.其中,把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n=6时,该黑色三角形内去掉小三角形个数为( )n=1 n=2 n=3A.81B.121C.364D.1093C [由题图可知,每一个图形中小三角形的个数等于前一个图形小三角形个数的3倍加1,所以,n=1时,a1=1;n=2时,a2=3+1=4;n=3时,a3=3×4+1=13;n=4时,a4=3×13+1=40;n=5时,a5=3×40+1=121;n=6时,a6=3×121+1=364,故选C.]3.对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+3;32=1+3+5;42=1+3+5+7;23=3+5;33=7+9+11;43=13+15+17+19.根据上述分解规律,则52=1+3+5+7+9,若m3(m∈N*)的分解中最小的数是73,则m的值为.9 [根据23=3+5;33=7+9+11;43=13+15+17+19,从23起,m3的分解规律恰为数列3,5,7,9…中若干连续项之和,23为前两项和,33为接下来三项和,故m3的首个数为m2-m+1.因为m3(m∈N*)的分解中最小的数是73,所以m2-m+1=73,解得m=9.]考点二 类比推理 类比推理的应用类型及解题方法类比定义在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解类比性质\n从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键类比方法有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移[典例2] (1)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+=x(x>0)求得x=.类比上述方法,则=( )A.3B.C.6D.2(2)若点P0(x0,y0)在椭圆+=1(a>b>0)外,过点P0作该椭圆的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为+=1.那么对于双曲线-=1(a>0,b>0),类似地,可以得到一个正确的切点弦方程为.(1)A (2)-=1 [(1)由题意结合所给的例子类比推理可得=x(x>0),整理得(x+1)(x-3)=0,则x=3,x=-1(舍),即=3,故选A.(2)若点P0(x0,y0)在双曲线-=1(a>0,b>0)外,过点P0作该双曲线的两条切线,切点分别为P1,P2,则切点弦P1P2所在直线的方程为-=1.]点评:类比推理的关键是找到合适的类比对象,推理的一般步骤为:先找出两类事物之间的相似性或一致性,再用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在平面几何中,若正方形ABCD的内切圆面积为S1,外接圆面积为S2,则=,推广到立体几何中,若正方体ABCDA1B1C1D1的内切球体积为V1,外接球体积为V2,则=. [正方形ABCD的内切圆的半径为r1,外接圆的半径为r2,半径比=,面积比为半径比的平方,=,正方体ABCDA1B1C1D1的内切球的半径为R1,外接球的半径为R2\n,半径比=,所以体积比是半径比的立方,=.]考点三 逻辑推理题 假设反证法解决逻辑推理问题:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.[典例3] 甲、乙、丙三位考生参加某高校自主招生测试,共有A,B,C,D,E五道题目,测试结束后三人得到如下信息:(1)本次测试中没有一道题目三人都做对,但是每道题至少有一人做对;(2)第三道题只有一人做对;(3)甲只做对了前三道题;(4)只有乙做错了第一题,乙做对的题目不相邻;(5)丙连续做错了三道题.从以上信息中可以判断丙连续做错的三道题是.B,C,D [由“甲只做对了前三道题”得出下表的第二行;由“第三道题只有一人做对”得出下表的第四列;由“只有乙做错了第一题”得出下表的第二列.如果丙做对B,则乙做错B,易知丙后三道题都做错,则乙做对D和E,这与“乙做对的题目不相邻”矛盾,所以丙做错B,C,D,如下表.故填B,C,D.ABCDE甲对对对错错乙错对/错错对错丙对错错错对]点评:本题是给出多种条件的推理题,用表格的形式直观、形象、鲜明地呈现出来,便于解题.从易判定的条件出发,逐个填满表格,筛选、假设、归纳贯穿其中,能有效考查学生的逻辑推理能力.1.甲、乙、丙、丁四人商量是否参加研学活动.甲说:“乙去我就肯定去.”乙说:“丙去我就不去.”丙说:“无论丁去不去,我都去.”丁说:“甲、乙中只要有一人去,我就去.”以下推论可能正确的是( )A.乙、丙两个人去了B.甲一个人去了C.甲、丙、丁三个人去了D.四个人都去了\nC [因为乙说“丙去我就不去”,且丙一定去,所以A,D不可能正确.因为丁说“甲、乙中只要有一人去,我就去”,所以B不可能正确.故选C.]2.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙A [若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲、乙成绩都高,即乙预测正确,不符合题意,故选A.]3.甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话只有一句是真的,那么会弹钢琴的是.乙 [假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意矛盾.故答案是乙.]
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年高考数学一轮复习第7章不等式推理与证明3合情推理与演绎推理课件(人教A版)
【高考讲坛】2023高考数学一轮复习 第6章 第4节 合情推理与演绎推理课后限时自测 理 苏教版
【红对勾】(新课标)2023高考数学大一轮复习 6.5合情推理与演绎推理课时作业 理.DOC
【名师伴你行】(新课标)2023高考数学大一轮复习 第11章 第2节 合情推理与演绎推理课时作业 理
2023高考数学统考一轮复习课后限时集训72合情推理与演绎推理理含解析新人教版202302272183
2023高考数学统考一轮复习第11章算法初步推理与证明第3节直接证明与间接证明数学归纳法教师用书教案理新人教版202303081189
2023高考数学统考一轮复习第11章算法初步推理与证明第1节算法与程序框图教师用书教案理新人教版202303081187
2023高考数学一轮复习第12章推理与证明算法复数第1节合情推理与演绎推理课时跟踪检测理含解析20230233195
高考数学一轮复习第6章不等式推理与证明第4讲合情推理与演绎推理知能训练轻松闯关理北师大版
高考数学一轮复习第6章不等式推理与证明第4讲合情推理与演绎推理知能训练轻松闯关文北师大版
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2022-08-25 17:30:44
页数:8
价格:¥3
大小:357.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划