首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
【红对勾】(新课标)2023高考数学大一轮复习 第二节 直线与圆的位置关系课时作业 理(选修4-1).DOC
【红对勾】(新课标)2023高考数学大一轮复习 第二节 直线与圆的位置关系课时作业 理(选修4-1).DOC
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
课时作业78 直线与圆的位置关系一、填空题1.如图,AB是⊙O的直径,MN与⊙O切于点C,AC=BC,则sin∠MCA=________.解析:由弦切角定理得,∠MCA=∠ABC,sin∠ABC====.答案:2.(2014·湖南卷)如图,已知AB,BC是⊙O的两条弦,AO⊥BC,AB=,BC=2,则⊙O的半径等于________.解析:设线段AO交BC于点D延长AO交圆与另外一点E,则BD=DC=,由三角形ABD8\n的勾股定理可得AD==1,由切割线定理可得BD·DC=AD·DE⇒DE=2,则直径AE=3⇒r=,故填.答案:3.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若=,=,则的值为________.解析:∵∠P=∠P,∠PCB=∠PAD,∴△PCB∽△PAD,∴==,∵=,=,∴=.答案:8\n4.如图,D是圆O的直径AB延长线上一点,PD是圆O的切线,P是切点,∠D=30°,AB=4,BD=2,PA=________.解析:连接PO,因为PD是⊙O的切线,P是切点,∠D=30°,所以∠POD=60°,并且AO=2,∠POA=120°,PO=2,在△POA中,由余弦定理知,PA=2.答案:25.已知圆O的半径为3,从圆O外一点A引切线AD和割线ABC,圆心O到AC的距离为2,AB=3,则切线AD的长为________.解析:取BC的中点E,连接OE,OB易知OE=2,OB=3,故BE==1,从而BC=2,故AC=5,由切割弦定理得AD2=AB·AC,故AD2=15,从而AD=.答案:6.如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连接BD,若BC=-1,则AC=________.解析:由题易知,∠C=∠ABC=72°,∠A=∠DBC=36°,所以△BCD∽△ACB,又易知BD=AD=BC,所以BC2=CD·AC=(AC-BC)·AC,解得AC=2.答案:27.(2014·湖北卷)如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B8\n.过PA的中点Q作割线交⊙O于C,D两点.若QC=1,CD=3,则PB=________.解析:由切割线定理得QA2=QC·QD=1×(1+3)=4,∴QA=2,PB=PA=2QA=4.答案:48.高速公路上的隧道和桥梁较多.如上图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径________米.解析:设圆的半径为R米,由题意得OD2+AD2=OA2,即(7-R)2+25=R2,解得R=.答案:9.如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB=________.8\n解析:连接O′A,O′B,O′O,由⊙O与⊙O′外切且半径相等得O′A=O′O,又因O′A⊥OA,所以∠AOO′=30°,同理∠BOO′=30°,故∠AOB=60°,由四边形的内角和为360°得∠AO′B=120°,故∠ACB=∠AO′B=60°.答案:60°二、解答题10.(2014·新课标全国卷Ⅰ)如右图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.8\n又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.11.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.(1)求证:四边形ACBE为平行四边形;(2)若AE=6,BD=5,求线段CF的长.解:解:(1)证明:因为AE与圆相切于点A,所以∠BAE=∠ACB.因为AB=AC,所以∠ABC=∠ACB.所以∠ABC=∠BAE.所以AE∥BC.因为BD∥AC,所以四边形ACBE为平行四边形.(2)因为AE与圆相切于点A,所以AE2=EB·(EB+BD),即62=EB·(EB+5),解得BE=4.根据(1)有AC=BE=4,BC=AE=6.设CF=x,由BD∥AC,得=,即=,解得x=,即CF=.8\n1.已知点C在圆O的直径BE的延长线上,直线CA与圆O相切于A,∠ACB的平分线分别交AB,AE于点D,F两点,若∠ACB=20°,则∠AFD=________.解析:因为AC为圆的切线,由弦切角定理,则∠B=∠EAC,又因为CD平分∠ACB,则∠ACD=∠BCD,所以∠B+∠BCD=∠EAC+∠ACD,根据三角形外角定理,∠ADF=∠AFD,因为BE是圆O的直径,则∠BAE=90°,所以△ADF是等腰直角三角形,所以∠ADF=∠AFD=45°.答案:45°2.如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G,给出下列三个结论:①AD+AE=AB+BC+CA;②AF·AG=AD·AE;③△AFB∽△ADG.其中正确结论的序号是________.解析:由题意,根据切线长定理,有BD=BF,CE=CF,所以AD+AE=(AB+BD)+(AC+CE)=(AB+BF)+(AC+CF)=AB+AC+(BF+CF)=AB+AC+BC,所以①正确;因为AD,AE是圆的切线,根据切线长定理,有AD=AE,又因为AG是圆的割线,所以根据切割线定理有AD2=AF·AG=AD·AE,所以②正确;根据弦切角定理有∠ADF=∠AGD,又因为BD=BF,所以∠BDF=∠BFD=∠ADF,在△AFB中,∠ABF=2∠ADF=2∠AGD,所以③错误.答案:①②8\n3.(2014·辽宁卷)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF⊥EP,所以∠PFA=90°,于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.8
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【红对勾】(新课标)2023高考数学大一轮复习 第二节 参数方程课时作业 理(选修4-4).DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.9直线与圆锥曲线的位置关系课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.5椭圆课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.4直线与圆、圆与圆的位置关系课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.3圆的方程课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.2直线的交点与距离公式课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 8.1直线的倾斜角与斜率、直线方程课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 6.1不等关系与不等式课时作业 理.DOC
【红对勾】(新课标)2023高考数学大一轮复习 2.8函数与方程课时作业 理.DOC
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2022-08-25 17:48:27
页数:8
价格:¥3
大小:446.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划