首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
(安徽专用)高考数学总复习 第七章第5课时 空间中的垂直关系课时闯关(含解析)
(安徽专用)高考数学总复习 第七章第5课时 空间中的垂直关系课时闯关(含解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第七章第5课时空间中的垂直关系课时闯关(含解析)一、选择题1.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是( )A.l∥m,l⊥α B.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α解析:选C.设m在平面α内的射影为n,当l⊥n且与α无公共点时,l⊥m,l∥α.2.(2012·开封质检)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析:选B.若l⊥m,m⊂α,则l与α可能平行、相交或l⊂α;若l⊥α,l∥m,则m⊥α;若l∥α,m⊂α,则l与m可能平行或异面;若l∥α,m∥α,则l与m可能平行、相交或异面,故只有B选项正确.3.正方体ABCD-A′B′C′D′中,E为A′C′的中点,则直线CE垂直于( )A.A′C′B.BDC.A′D′D.AA′解析:选B.连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.4.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①②B.①②③C.①D.②③解析:选 B.对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.5.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么( )A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PB≠PC解析:选C.∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故PA=PB=PC.二、填空题6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:与PC垂直的直线有________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,∴AB⊥平面PAC,5\n∴AB⊥PC.与AP垂直的直线是AB.答案:AB,BC,AC AB5\n7.(2012·绵阳质检)在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.解析:如图,∵P-ABC为正三棱锥,∴PB⊥AC;又∵DE∥AC,DE⊂平面PDE,AC⊄平面PDE,∴AC∥平面PDE.故①②正确.答案:①②8.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a⊥α,a⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,a⊂α,b⊂β,则a∥b;④若α∥β,α∩γ=a,β∩γ=b,则a∥B.其中正确命题的序号有________.解析:垂直于同一直线的两平面平行,①正确;α⊥β也成立,②错;a、b也可异面,③错;由面面平行性质知,a∥b,④正确.答案:①④三、解答题9.如图,在七面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.(1)求证:平面BEF⊥平面DEFG;(2)求证:BF∥平面ACGD;(3)求三棱锥A-BCF的体积.解:(1)证明:∵平面ABC∥平面DEFG,平面ABC∩平面ADEB=AB,平面DEFG∩平面ADEB=DE,∴AB∥DE.∵AB=DE,∴四边形ADEB为平行四边形,∴BE∥AD.∵AD⊥平面DEFG,∴BE⊥平面DEFG,∵BE⊂平面BEF,∴平面BEF⊥平面DEFG.(2)证明:取DG的中点为M,连接AM、FM,则有DM=DG=1,又EF=1,EF∥DG,∴四边形DEFM是平行四边形,∴DE綊FM,又∵AB綊DE,∴AB綊FM,∴四边形ABFM是平行四边形,即BF∥AM,又BF⊄平面ACGD,AM⊂平面ACGD,故BF∥平面ACGD.(3)∵平面ABC∥平面DEFG,则F到平面ABC的距离为AD.5\nVABCF=VFABC=·S△ABC·AD=×(×1×2)×2=.10.如图,梯形ABCD和正△PAB所在平面互相垂直,其中AB∥DC,AD=CD=AB,且O为AB中点.求证:(1)BC∥平面POD;(2)AC⊥PD.证明:(1)因为O为AB的中点,所以BO=AB,又AB∥CD,CD=AB,所以有CD綊BO,所以四边形ODCB为平行四边形,所以BC∥OD,又DO⊂平面POD,BC⊄平面POD,所以BC∥平面POD.(2)连接OC.因为CD=BO=AO,CD∥AO,所以四边形ADCO为平行四边形,又AD=CD,所以ADCO为菱形,所以AC⊥DO,因为△PAB为正三角形,O为AB的中点,所以PO⊥AB,又因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,所以PO⊥平面ABCD,而AC⊂平面ABCD,所以PO⊥AC,又PO∩DO=O,所以AC⊥平面POD.又PD⊂平面POD,所以AC⊥PD.11.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.解:(1)取AB的中点E,连接DE,CE.∵△ADB是等边三角形,∴DE⊥A B.当平面ADB⊥平面ABC时,∵平面ADB∩平面ABC=AB,∴DE⊥平面ABC,可知DE⊥CE.由已知可得DE=,EC=1.在Rt△DEC中,CD==2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当D在平面ABC内时,∵AC=BC,AD=BD,∴C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又∵AC=BC,∴AB⊥CE.又DE,CE为相交直线,∴AB⊥平面CDE.由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.5\n5
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
(福建专用)高考数学总复习 第八章第4课时 空间中的平行关系课时闯关(含解析)
(福建专用)高考数学总复习 第七章第7课时 双曲线课时闯关(含解析)
(安徽专用)高考数学总复习 第十章第3课时 变量间的相关关系、统计案例课时闯关(含解析)
(安徽专用)高考数学总复习 第九章第5课时 古典概型课时闯关(含解析)
(安徽专用)高考数学总复习 第七章第8课时 立体几何中的向量方法 课时闯关(含解析)
(安徽专用)高考数学总复习 第七章第6课时 空间直角坐标系 课时闯关(含解析)
(安徽专用)高考数学总复习 第七章第4课时 空间中的平行关系课时闯关(含解析)
(安徽专用)高考数学总复习 第七章第3课时 空间点、直线、平面之间的位置关系课时闯关(含解析)
高考数学总复习 第八章 第5课时 空间中的垂直关系随堂检测(含解析) 新人教版
高考数学总复习 第七章 第5课时 椭圆课时闯关(含解析) 新人教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 21:36:23
页数:5
价格:¥3
大小:172.50 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划