首页

(安徽专用)高考数学总复习 第七章第5课时 空间中的垂直关系课时闯关(含解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第七章第5课时空间中的垂直关系课时闯关(含解析)一、选择题1.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是(  )A.l∥m,l⊥α        B.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α解析:选C.设m在平面α内的射影为n,当l⊥n且与α无公共点时,l⊥m,l∥α.2.(2012·开封质检)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m解析:选B.若l⊥m,m⊂α,则l与α可能平行、相交或l⊂α;若l⊥α,l∥m,则m⊥α;若l∥α,m⊂α,则l与m可能平行或异面;若l∥α,m∥α,则l与m可能平行、相交或异面,故只有B选项正确.3.正方体ABCD-A′B′C′D′中,E为A′C′的中点,则直线CE垂直于(  )A.A′C′B.BDC.A′D′D.AA′解析:选B.连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.4.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是(  )A.①②B.①②③C.①D.②③解析:选      B.对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.5.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么(  )A.PA=PB>PCB.PA=PB<PCC.PA=PB=PCD.PA≠PB≠PC解析:选C.∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故PA=PB=PC.二、填空题6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:与PC垂直的直线有________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,∴AB⊥平面PAC,5\n∴AB⊥PC.与AP垂直的直线是AB.答案:AB,BC,AC AB5\n7.(2012·绵阳质检)在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.解析:如图,∵P-ABC为正三棱锥,∴PB⊥AC;又∵DE∥AC,DE⊂平面PDE,AC⊄平面PDE,∴AC∥平面PDE.故①②正确.答案:①②8.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a⊥α,a⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,a⊂α,b⊂β,则a∥b;④若α∥β,α∩γ=a,β∩γ=b,则a∥B.其中正确命题的序号有________.解析:垂直于同一直线的两平面平行,①正确;α⊥β也成立,②错;a、b也可异面,③错;由面面平行性质知,a∥b,④正确.答案:①④三、解答题9.如图,在七面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AC=EF=1,AB=AD=DE=DG=2.(1)求证:平面BEF⊥平面DEFG;(2)求证:BF∥平面ACGD;(3)求三棱锥A-BCF的体积.解:(1)证明:∵平面ABC∥平面DEFG,平面ABC∩平面ADEB=AB,平面DEFG∩平面ADEB=DE,∴AB∥DE.∵AB=DE,∴四边形ADEB为平行四边形,∴BE∥AD.∵AD⊥平面DEFG,∴BE⊥平面DEFG,∵BE⊂平面BEF,∴平面BEF⊥平面DEFG.(2)证明:取DG的中点为M,连接AM、FM,则有DM=DG=1,又EF=1,EF∥DG,∴四边形DEFM是平行四边形,∴DE綊FM,又∵AB綊DE,∴AB綊FM,∴四边形ABFM是平行四边形,即BF∥AM,又BF⊄平面ACGD,AM⊂平面ACGD,故BF∥平面ACGD.(3)∵平面ABC∥平面DEFG,则F到平面ABC的距离为AD.5\nVABCF=VFABC=·S△ABC·AD=×(×1×2)×2=.10.如图,梯形ABCD和正△PAB所在平面互相垂直,其中AB∥DC,AD=CD=AB,且O为AB中点.求证:(1)BC∥平面POD;(2)AC⊥PD.证明:(1)因为O为AB的中点,所以BO=AB,又AB∥CD,CD=AB,所以有CD綊BO,所以四边形ODCB为平行四边形,所以BC∥OD,又DO⊂平面POD,BC⊄平面POD,所以BC∥平面POD.(2)连接OC.因为CD=BO=AO,CD∥AO,所以四边形ADCO为平行四边形,又AD=CD,所以ADCO为菱形,所以AC⊥DO,因为△PAB为正三角形,O为AB的中点,所以PO⊥AB,又因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,所以PO⊥平面ABCD,而AC⊂平面ABCD,所以PO⊥AC,又PO∩DO=O,所以AC⊥平面POD.又PD⊂平面POD,所以AC⊥PD.11.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.解:(1)取AB的中点E,连接DE,CE.∵△ADB是等边三角形,∴DE⊥A      B.当平面ADB⊥平面ABC时,∵平面ADB∩平面ABC=AB,∴DE⊥平面ABC,可知DE⊥CE.由已知可得DE=,EC=1.在Rt△DEC中,CD==2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当D在平面ABC内时,∵AC=BC,AD=BD,∴C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又∵AC=BC,∴AB⊥CE.又DE,CE为相交直线,∴AB⊥平面CDE.由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.5\n5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:36:23 页数:5
价格:¥3 大小:172.50 KB
文章作者:U-336598

推荐特供

MORE