首页

(安徽专用)高考数学总复习 第九章第2课时 排列与组合课时闯关(含解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

第九章第2课时排列与组合课时闯关(含解析)一、选择题1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(  )A.42B.30C.20D.12解析:选A.可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有AA=12种排法;若两个节目不相邻,则有A=30种排法.由分类计数原理知共有12+30=42种排法.(或A=42)2.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(  )A.85B.56C.49D.28解析:选C.甲、乙、丙都没入选,有C=35(种),丙没有入选有C=84(种),故甲、乙至少有1人入选而丙没有入选的不同选法有84-35=49(种).3.(2010·高考山东卷)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有(  )A.36种B.42种C.48种D.54种解析:选B.由题意知,可以考虑分成两类计算,若甲排在第一位则有A种方案,若甲排在第二位则有CA种方案,所以按照要求该台晚会节目演出顺序的编排方案共有A+CA=42(种),故选B.4.把3盆不同的兰花和4盆不同的玫瑰花摆放在右图中的1,2,3,4,5,6,7所示的位置上,其中3盆兰花不能放在一条直线上,则不同的摆放方法有(  )A.2680种B.4320种C.4920种D.5140种解析:选B.先将7盆花全排列,共有A种排法,其中3盆兰花排在一条直线上的排法有5AA(种),故所求摆放方法有A-5AA=4320(种).5.(2012·宜昌调研)某省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为(  )A.72B.108C.180D.216解析:选C.设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法,这时共有CCA种参加方法;2\n(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法.综合(1)(2),共有CCA+CA=180种参加方法.二、填空题6.若3A=2A+6A,则x=________.解析:原方程可化为:3x(x-1)(x-2)=2(x+1)x+6x(x-1).∵x≥3,∴3(x-1)(x-2)=2(x+1)+6(x-1),即3x2-17x+10=0,解得x=(舍去)或x=5.∴原方程的解为x=5.答案:57.某班由8名女生和12名男生组成,现要组织5名学生外出参观,若这5名成员按性别分层抽样产生,则参观团的组成方法共有________种.(用数字作答)解析:由题意按分层抽样应抽2名女生和3名男生,则有CC=6160种组成方法.答案:61608.某公司计划在北京、上海、兰州、银川四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是________.(用数字作答)解析:由题意知按投资城市的个数分两类:①投资3个城市即A种.②投资2个城市即CA种,共有不同的投资方案种数是A+CA=60.答案:60三、解答题9.有2个a,3个b,4个c共9个字母排成一排,共有多少种排法?解:因为a与a,b与b,c与c无区别,所以排法取决于9个位置中哪几个排a,哪几个排b,剩下的再排c,故共有CCC=1260种不同的排法.10.(2012·黄冈质检)按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本.解:(1)无序不均匀分组问题.先选1本有C种选法;再从余下的5本中选2本有C种选法;最后余下3本全选有C种选法.故共有CCC=60种不同的分配方式.(2)有序不均匀分组问题.由于甲、乙、丙是不同三人,在第(1)题的基础上,还应考虑再分配,故共有CCCA=360种不同的分配方式.11.已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?解:(1)先排前4次测试,只能取正品,有A种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C·A=A种测试方法,再排余下4件的测试位置,有A种测试方法.所以共有不同的测试方法A·A·A=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同的测试方法A·(C·C)A=576(种).2

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:36:19 页数:2
价格:¥3 大小:46.50 KB
文章作者:U-336598

推荐特供

MORE