首页

(江苏专用)2023高考数学总复习 (基础达标演练+综合创新备选)第二篇 函数与基本初等函数《第12讲 函数模型及其应用》理(含解析) 苏教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

2013高考总复习江苏专用(理科):第二篇函数与基本初等函数《第12讲 函数模型及其应用》(基础达标演练+综合创新备选,含解析)A级 基础达标演练(时间:45分钟 满分:80分)一、填空题(每小题5分,共35分)1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20x-0.1x2(0<x<240,x∈N+),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是________台.解析 设利润为f(x)(万元),则f(x)=25x-(3000+20x-0.1x2)=0.1x2+5x-3000≥0,∴x≥150.答案 1502.某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x的最小值是________.解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000,化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2,或x%≤-3.2(舍去).∴x≥20,即x的最小值为20.答案 203.(2010·南通模拟)从盛满20升纯消毒液的容器中倒出1升,然后用水加满,再倒出1升,再用水加满.这样继续下去,则所倒次数x和残留消毒液y之间的函数解析式为________.解析 所倒次数1次,则y=19;所倒次数2次,则y=19×……所倒次数x次,则y=19x-1=20x.答案 y=20x4.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.38\nmg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车(精确到1小时).解析 设至少经过x小时才能开车.由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3.x≥log0.750.3≈5.答案 55.(2011·连云港模拟)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文密文密文明文已知加密为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y=ax-2中,当x=3时,y=6,故6=a3-2,解得a=2.所以加密为y=2x-2,因此,当y=14时,由14=2x-2,解得x=4.答案 46.某工厂生产某种产品固定成本为2000万元.并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-Q2,则总利润L(Q)的最大值是________万元.解析 L(Q)=40Q-Q2-10Q-2000=-Q2+30Q-2000=-(Q-300)2+2500当Q=300时,L(Q)的最大值为2500万元.答案 25007.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.解析 已知本金为a元,利率为r,则1期后本利和为y=a+ar=a(1+r),2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2,3期后本利和为y=a(1+r)3,……x期后本利和为y=a(1+r)x,x∈N*.答案 y=a(1+r)x,x∈N*8\n二、解答题(每小题15分,共45分)8.(2011·南京外国语学校调研)即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次.每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指火车运送的人数)解 设这列火车每天来回次数为t次,每次拖挂车厢n节,则设t=kn+b.由解得所以t=-2n+24.设每次拖挂n节车厢每天营运人数为y人,则y=tn×110×2=2(-220n2+2640n).当n==6时,总人数最多为15840人.故每次应拖挂6节车厢才能使每天的营运人数最多为15840人.9.(2011·扬州市调研)某销售商销售某品牌手机,该品牌手机的进价为每部1580元,零售价为每部1880元.为促进销售,拟采用买一部手机赠送一定数量礼物的方法,且赠送礼物的价值不超过180元.统计表明:在促销期间,礼物价值每增加15元(礼物的价值都是15元的整数倍,如礼物价值为30元,可视为两次增加15元,其余类推),销售量都增加11%.(1)当赠送礼物的价值为30元时,销售的总利润变为原来不赠送礼物时的多少倍?(2)试问赠送礼物的价值为多少元时,商家可获得最大利润?解 设该品牌手机在不赠送礼物的条件下销售量为m部,(1)原来利润为(1880-1580)m=300m(元),当赠送礼物的价值为30元时,销售的总利润为(1880-1580-30)m(1+11%)2=1.2321×270m,=1.10889,即当赠送礼物的价值为30元时,销售的总利润变为原来不赠送礼物时的1.1倍.(2)当赠送礼物的价值为15x元时,销售的总利润为f(x)元,则f(x)=(1880-1580-15x)·m·(1+11%)x=15m(20-x)·1.11x,x∈N,且x≤12,f(x+1)-f(x)=15m(1.09-0.11x)·1.11x,令f(x+1)-f(x)≥0,得x≤9.因为x∈N,且x≤12,所以当x≤9时,f(x+1)>f(x);当9<x≤12时,f(x+1)<f(x).8\n故当赠送礼物的价值为150元时,可以获得最大利润.10.(2011·扬州市冲刺)某企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如下左图,B产品的利润与投资的算术平方根成正比,其关系如下右图(注:利润与投资单位:万元).(1)分别将A、B两种产品的利润表示为投资x(万元)的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?解 (1)设投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元.由题设f(x)=k1x,g(x)=k2,由图知f(1)=,故k1=.又g(4)=,所以k2=.从而f(x)=x(x≥0),g(x)=(x≥0).(2)设A产品投入x万元,则B产品投入(10-x)万元,设企业利润为y万元.y=f(x)+g(10-x)=x+(0≤x≤10).令t=,则y=+t=-2+(0≤t≤10).当t=时,ymax=,此时x=3.75.故当A产品投入3.75万元,则B产品投入6.25万元,企业最大利润为万元.B级综合创新备选(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.2002年初,甲、乙两外商在济南各自兴办了一家大型独资企业.2010年初在经济指标对比时发现,这两家企业在2002年和2009年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长:企业甲年增长数相同,而企业乙年增长率相同.则2010年两企业缴纳地税的情况下列说法中正确的是________(填序号).8\n①甲多②乙多③甲乙一样多④不能确定解析 设企业甲每年缴纳的地税组成数列{an},由于企业甲年增长数相同,所以数列{an}是等差数列,则an是关于n的一次函数.设企业乙每年缴纳的地税组成数列{bn},由于企业乙年增长率相同,所以数列{bn}是等比数列,则bn是关于n的指数型函数.根据题意,a1=b1,a8=b8,如图知a9<b9,故2010年企业乙缴纳的地税多.答案 ②2.将函数y-1(x∈[0,2])图象绕原点逆时针方向旋转θ角(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值是________.解析 由函数定义,若曲线对应的方程为函数解析式时,直线x=a与该曲线若相交,则仅有一个交点,如图,当α=时符合题意.答案 3.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注入2t2升,当水箱内水量达到最小值时,放水自动停止,现假定每人洗浴用水65升,则该热水器一次至多可供________人洗浴.解析 由题意得水箱内的水量为y=200-34t+2t2=22+200-,当t=时,水箱内的水量达到最小值,此时放水量为×34=289升,而4<<5,所以该热水器一次至多可供4个人洗浴.答案 44.(2010·浙江)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x的最小值是________.解析 由题意得,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000,化简得(x%)2+3·x%-0.64≥0,8\n解得x%≥0.2,或x%≤-3.2(舍去).所以x≥20,即x的最小值为20.答案 205.某商人购货,进价已按原价a扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式为________.解析 设新价为b,依题意,有b(1-20%)-a(1-25%)=b(1-20%)·25%,化简得b=a,所以y=b·20%·x=a·20%·x,即y=x(x∈N*).答案 y=x(x∈N*)6.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.①则第一次服药后y与t之间的函数关系式y=f(t)=________.②据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.则服药一次后治疗有效的时间是________小时.解析 ①设y=当t=1时,由y=4得k=4,由1-a=4得a=3.则y=②由y≥0.25得或解得≤t≤5因此服药一次后治疗有效的时间是5-=小时.答案 ①y= ②二、解答题(每小题15分,共30分)7.(2011·南京模拟)2014年青奥会水上运动项目将在J地举行,截止2010年底,投资集团B在J地共投资100万元用于地产和水上运动项目的开发,经调研,从2011年初到2014年底的四年间,B集团预期可从三个方面获得利润:8\n一是房地产项目,四年获得的利润的值为该项目投资额(单位:百万元)的20%;二是水上运动项目,四年获得的利润的值为该项目投资额(单位:百万元)的算术平方根;三是旅游业,四年可获得利润10百万元.(1)B集团的投资应如何分配,才能使这四年总的预期利润最大?(2)假设2012年起,J地政府每年都要向B集团征收资源占用费,2012年征收2百万元后,以后每年征收的金额比上一年增加10%,若B集团投资成功的标准是:从2011年初到2014年底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于投资额的18%,问B集团投资是否成功?解 (1)设B集团用于水上运动项目的投资为x百万元,四年的总利润为y百万元.由题意,y=0.2(100-x)++10=-0.2x++30,x∈[0,100].即y=-0.2(-2.5)2+31.25,∈[0,10].所以当=2.5,即x=6.25时,ymax=31.25.故B集团在水上运动项目投资6.25百万元,所获得的利润最大,为31.25百万元.(2)由(1)知,在上交资源占用费前,ymax=31.25,ymin=20.由题意,得从2012年到2014年,B集团需上交J地政府资源占用费共为2(1+1.11+1.12)=6.62(百万元).所以B集团这四年的预期利润中值为-6.62=19.005.由于=19.005%>18%,所以B集团投资能成功.故B集团在J地投资能成功.8.(2010·湖北卷)为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解 (1)设隔热层厚度为xcm,由题设,每年能源消耗费用为C(x)=,再由C(0)=8,得k=40,因此C(x)=.而建造费用为C1(x)=6x.8\n最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=20×+6x=+6x(0≤x≤10).(2)f(x)=2-10≥2×2-10=70(当且仅当=3x+5,即x=5时,“=”成立),所以当x=5时,f(x)min=f(5)=70.故隔热层修建5cm厚时,总费用达到最小值70万元.8

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

其他相关资源

文档下载

发布时间:2022-08-25 21:34:55 页数:8
价格:¥3 大小:112.00 KB
文章作者:U-336598

推荐特供

MORE