(福建专用)高考数学总复习 第十章第1课时 随机抽样课时闯关(含解析)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
(福建专用)2013年高考数学总复习第十章第1课时随机抽样课时闯关(含解析)一、选择题1.现有以下两项调查:①某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取60册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是( )A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法解析:选D.根据三种抽样方法的特点和适用的范围知,A、B、C都不正确.2.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验解析:选D.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.3.(2012·辽宁育才中学质检)用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( )A.7 B.5C.4D.3解析:选B.由系统抽样知第一组确定的号码是5.4.(2010·高考四川卷)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,6解析:选D.由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×=8,40×=16,40×=10,40×=6.5.要从已编号(1~50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射的试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25B.1,2,3,4,5C.2,4,8,16,22D.3,13,23,33,43解析:选D.系统抽样方法抽取到的导弹编号应该是k,k+d,k+2d,k+3d,k+4d,其中d==10,k是1~10中用简单随机抽样方法得到的数.4\n二、填空题6.最近网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,某校高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为__________.解析:由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:577.(2012·三明质检)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为________.解析:设样本容量为N,则N×=6,所以N=14,故在高二年级的学生中应抽取的人数为14×=8.答案:88.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别ABC产品数量(件)1300样本容量130由于不小心,表格中A、C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是________件.解析:设样本的总容量为x,则×1300=130,∴x=300.∴A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,∴y=80.∴C产品的数量为×80=800.答案:800三、解答题9.某学校为了了解2011年高考语文课的考试成绩,计划在高考后对1200名学生进行抽样调查,其中文科300名考生,理科600名考生,艺术类考生200人,体育类考生70人,外语类考生30人,如果要抽120人作为调查分析对象,则按科目分别应抽多少考生?解:从1200名考生中抽取120人作调查,由于各科目考试人数不同,为了更准确地了解情况,可采用分层抽样,抽样时每层所抽人数按1∶10分配.∴300×=30(人),600×=60(人),200×=20(人),70×=7(人),30×=3(人).所以抽取的文科,理科,艺术,体育,外语类考生分别是30人,60人,20人,7人,3人.10.某初级中学共有学生2000名,各年级男、女生人数如下表:4\n初一年级初二年级初三年级女生373xy男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.解:(1)因为=0.19,所以x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,应在初三年级抽取的人数为48×=12.(3)设初三年级女生比男生多的事件为A,初三年级女生、男生数记为(y,z),由(2)知y+z=500,且y、z为正整数,基本事件有(245,255),(246,254),(247,253),…,(255,245)共11个,事件A包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245)共5个.所以P(A)=.一、选择题1.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35B.0.25C.0.20D.0.15解析:选B.由表格可知,三次投篮恰有两次命中的结果有191,271,932,812,393,共5个,概率为=.2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,9解析:选B.依题意可知,在随机抽样中,首次抽到003号,以后每隔12个号抽到一个人,则分别是003、015、027、039…构成以3为首项,12为公差的等差数列,故可分别求出在001到300中有25人,在301至495号中共有17人,则496到600中有8人,所以B正确.二、填空题3.(2012·泉州调研)在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.解析:每一个个体被抽到的概率都是样本容量除以总体,即=.答案:4\n4.某学校有高一学生720人,现从高一、高二、高三这三个年级学生中采用分层抽样的方法,抽取180人进行英语水平测试.已知抽取的高一学生数是抽取的高二学生数、高三学生数的等差中项,且高二年级抽取40人,则该校高三学生人数是________.解析:设抽取高一学生x人,抽取高三学生y人,高三学生总人数为z人,则由题意得:求得又由=,得z=960.答案:960三、解答题5.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中的一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.(1)在游泳组中,试确定青年人、中年人、老年人分别所占的比例;(2)在游泳组中,试确定青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x,在游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有=47.5%,=10%,解得b=50%,c=10%.故a=100%-50%-10%=40%,即在游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)在游泳组中,抽取的青年人人数为200××40%=60(人);抽取的中年人人数为200××50%=75(人);抽取的老年人人数为200××10%=15(人).6.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解:总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为·6=,技术员人数为·12=,技工人数为·18=,所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为,因为必须是整数,所以n只能取6.即样本容量n=6.4
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)