首页

2022年中考数学模拟试题汇编 四边形综合题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/45

2/45

剩余43页未读,查看更多内容需下载

2022年中考数学模拟试题汇编四边形综合题一、选择题1.如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有(  )①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是④四边形AnBnCnDn的面积是.A、①②B、②③C、②③④D、①②③④考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质。专题:规律型。分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,45\n∴四边形ABCD是平行四边形;∴B1D1=A1C1(平行四边形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;故本选项错误;②由①知,四边形A2B2C2D2是菱形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故本选项正确;③根据中位线的性质易知,A5B5=A3B3=×A1B1=××AB,B5C5=B3C3=×B1C1=××BC,∴四边形A5B5C5D5的周长是2×(a+b)=;故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn的面积是;故本选项错误;综上所述,②③④正确;故选C.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.2.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、45\nN,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A.①②B.②③C.②④D.③④考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.分析:①根据平行四边形的对边相等的性质即可求得AO≠BO,即可求得①错误;②易证△AOE≌△COF,即可求得EO=FO;③根据相似三角形的判定即可求得△EAM∽△EBN;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误.答案:解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;②∵AB∥CD,∴∠E=∠F,又∵∠EOA=∠FOC,AO=CO∴△AOE≌△COF,∴OE=OF,故②正确;③∵AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO,故△EAO和△CNO不相似,故④错误,即②③正确.故选B.点评:本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE≌△COF是解题的关键.3.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()45\nABCDFEG10题图A.1B.2C.3D.4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴=,EF=DE=2,GF=3,∴EG=5,∴==,∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)=≠3.故选C.45\n点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.4.己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点.连接BF、DF交于点P.连接CP并延长交AB于点Q,连揍AF,则下列结论不正确的是().A.CP平分∠BCDB.四边形ABED为平行四边形C,CQ将直角梯形ABCD分为面积相等的两部分D.△ABF为等腰三角形【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【专题】证明题;几何综合题.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;45\n【解答】证明:易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED;∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;又∵AD=BE且AB∥BE,∴四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;综上,选项A、B、D正确;故选C.【点评】本题考查了等腰三角形、平行四边形和全等三角形的判定,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.5.如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为(  )A、9cmB、14cmC、15cmD、18cm考点:平行线分线段成比例;平行四边形的性质。分析:延长FG交CB的延长线于点H.根据平行四边形的性质,得BC=AD=6cm,BC∥AD.根据AAS可以证明△AFE≌△BHE,则BH=AF=2cm,再根据BC∥AD,得,求得CG的长,从而求得AC的长.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=6cm,BC∥AD.∴∠EAF=∠EBH,∠AFE=∠BHE,又AE=BE,∴△AFE≌△BHE,45\n∴BH=AF=2cm.∵BC∥AD,∴,即,则CG=12,则AC=AG+CG=15(cm).故选C.点评:此题综合考查了平行四边形的性质、全等三角形的判定及性质、平行线分线段成比例定理.此题中要能够巧妙构造辅助线6.下列四边形中,对角线相等且互相垂直平分的是(  )A、平行四边形B、正方形C、等腰梯形D、矩形考点:等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.专题:常规题型.分析:利用对角线相等且互相垂直平分的四边形是正方形作出判断即可.解答:解:对角线相等且互相垂直平分的四边形是正方形,故选B.点评:本题考查了等腰梯形、平行四边形、正方形及矩形的对角线的性质,牢记特殊的四边形的判定定理是解决此类问题的关键.7.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD上,若P到BD的距离为,则点P的个数为(  )A、1B、2C、3D、4【答案】B【考点】解直角三角形;点到直线的距离.【专题】几何综合题.45\n【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°-∠ADB=45°,∴AE=AB•tan∠ABD=2•tan45°=2=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,∴CF=CD•tan∠CDF==1,所以在边BC和CD上没有到BD的距离为的点,所以P到BD的距离为的点有2个,故选:B.【点评】此题考查的知识点是解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD的最大距离比较得出答案.8.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=OA;(4)AE2+CF2=2OP•OB,正确的结论有(  )个.A、1 B、2      C、3  D、4考点:正方形的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质。45\n分析:本题考查正方形的性质,四边相等,四个角都是直角,对角线相等,垂直且互相平分,且平分每一组对角.解答:解:(1)从图中可看出全等的三角形至少有四对.故(1)错误.(2)△OBE的面积和△OFC的面积相等,故正方形ABCD的面积等于四边形OEBF面积的4倍,故(2)正确.(3)BE+BF是边长,故BE+BF=OA是正确的.(4)因为AE=BF,CF=BE,故AE2+CF2=2OP•OB是正确的.故选C.点评:本题考查了正方形的性质,全等三角形的判定和性质,以及勾股定理和相似三角形的判定和性质等.9.已知正六边形的边心距为,则它的周长是(  )A、6B、12C、6D、12考点:正多边形和圆。专题:计算题。分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得边长AB,从而求出周长.解答:解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷2.这个正六边形的周长=12.故选B.点评:此题主要考查正多边形的计算问题,属于常规题.解题的关键是正确的构造直角三角形.45\n二、填空题1.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是 60 °.考点:翻折变换(折叠问题)。专题:计算题。分析:根据折叠的性质得到DF=BF=4,∠BFE=∠DFE,在Rt△DFC中,根据含30°的直角三角形三边的关系得到∠FDC=30°,则∠DFC=60°,所以有∠BFE=∠DFE=(180°﹣60°)÷2,然后利用两直线平行内错角相等得到∠DEF的度数.解答:解:∵矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF,∴DF=BF=4,∠BFE=∠DFE,在Rt△DFC中,FC=2,DF=4,∴∠FDC=30°,∴∠DFC=60°,∴∠BFE=∠DFE=(180°﹣60°)÷2=60°,∴∠DEF=∠BFE=60°.故答案为60.点评:本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质和含30°的直角三角形三边的关系.2.1.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是    考点:正方形的性质;三角形内角和定理;等腰三角形的性质;等边三角形的性质。专题:计算题。分析:当E在正方形ABCD内时,根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出即可;当E在正方形ABCD外时,根据等边三角形CDE,推出∠ADE=150°,求出即可.45\n解答:解:有两种情况:当E在正方形ABCD内时,∵正方形ABCD,∴AD=CD,∠ADC=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°﹣60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°﹣∠ADE)=75°;当E在正方形ABCD外时,∵等边三角形CDE,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=(180°﹣∠ADE)=15°.故答案为:15°或75°.点评:本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.3.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 4 .考点:角平分线的性质;垂线段最短45\n分析:根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件推出∠C=∠ADC,推出△ABC≌△PBD,即可AD=DP.解答:解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,∠ADB=∠C,∠A=90°,∴∠C=∠ADC,∴△ABC≌△PBD,∵AD=4,∴DP=4.故答案为:4.点评:本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分的性质,解题的关键在于确定好DP处置于BC.三、解答题1.如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.考点:等腰梯形的性质;全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质;相似三角形的判定与性质.专题:证明题.分析:(1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,利用一组对边平行且相等判定平行四边形;(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.解答:证明:(1)连接BD,∵梯形ABCD中,AD∥BC,AB=DC,∴AC=BD,∠ACB=∠DBC∵DE⊥BC,EF=DE,∴BD=BF,∠DBC=∠FBC,∴AC=BF,∠ACB=∠CBF∴AC∥BF,∴四边形ABFC是平行四边形;(2)∵DE2=BE•CE45\n∴,∵∠DEB=∠DEC=90°,∴△BDE∽△DEC∴∠BDC=∠BFC=90°,∴四边形ABFC是矩形.点评:本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但题目的难度不算大.2.如图5所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.图5考点:菱形的性质,等边三角形的判定与性质,平行四边形的判定与性质,线段的倍分关系专题:四边形分析:思路一:易知四边形ACED是平行四边形,则AD=CE=BC,从而可知BC=BE,要说明DE=BE,只需说明DE=BC即可.思路二:连接BD,先证∠BDE=90°,再证∠DBE=30°,根据30°的角所对的直角边等于斜边的一半可直接获得结论(自己完成证明过程).解答:∵ABCD是菱形,∴AD//BC,AB=BC=CD=DA.又∵∠ABC=60°,∴BC=AC=AD.∵DE∥AC∴ACED为平行四边形.∴CE=AD=BC,DE=AC.∴DE=CE=BC,45\n∴DE=BE.点评:两组对边分别平行的四边形是平行四边形,而平行四边形的对边相等,由此可以得出相等的线段,可实现线段的等量代换(转移),这就为证明线段相等或倍、分关系创造了条件.3.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.ABEGCDF24题图考点:梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理分析:(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2,根据CE⊥BE,点G为BC的中点即可求出EG;(2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD≌△HCD,得到AD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案.解答:(1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC==2,∵CE⊥BE,点G为BC的中点,∴EG=BC=.答:EG的长是.(2)证明:在线段CF上截取CH=BA,连接DH,45\nABEGCDF24题答图∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC﹣∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.点评:本题主要考查对梯形,全等三角形的性质和判定,平行线的性质,直角三角形斜边上的中线,勾股定理等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.4.如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.45\n考点:相似三角形的判定;线段垂直平分线的性质;菱形的判定;矩形的性质。专题:证明题;综合题。分析:(1)根据角平分线的定义,同角的余角相等可知∠AFO=∠CAB,根据垂直的定义,矩形的性质可知∠ABC=∠FOA,由相似三角形的判定可证△ABC与△FOA相似;(2)先证明四边形AFCE是平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判断.解答:解:(1)∵直线l垂直平分线段AC,∴∠AFO=∠CFO,∵∠CFO+∠FCO=∠CAB+∠FCO=90°,∴∠AFO=∠CAB,∵∠AOF=∠CBA=90°,∴△ABC∽△FOA.(2)∵直线l垂直平分线段AC,∴AF=CF,可证△AOF≌△AOE,∴AE=CF,FO=EO.∵四边形ABCD是矩形,∴四边形AFCE是平行四边形,∴四边形AFCE是菱形.点评:考查了线段垂直平分线的性质,相似三角形的判定,矩形的性质,菱形的判定,综合性较强,有一定的难度.5.如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF45\n为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.ADCOBPFE26题图考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,解直角三角形可求t的值;(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的值.解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,BC=2,tan∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴当边FG恰好经过点C时,t=1;ADCOBPFEG26题答图①45\n(2)当0≤t<1时,S=2t+4;当1≤t<3时,S=﹣t2+3t+;当3≤t<4时,S=﹣4t+20;当4≤t<6时,S=t2﹣12t+36;(3)存在.理由如下:在Rt△ABC中,tan∠CAB==,∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,∴AE=HE=3﹣t或t﹣3,1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM=AH=,在Rt△AME中,cos∠MAE═,即cos30°=,∴AE=,即3﹣t=或t﹣3=,∴t=3﹣或t=3+,ADCOBPEHM26题答图②2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,又∵AE+EO=3,∴AE+2AE=3,AE=1,即3﹣t=1或t﹣3=1,∴t=2或t=4;45\nADCOBPEH26题答图③3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=3,即3﹣t=3或t﹣3=3,t=6(舍去)或t=0;ADCO(E)BPH26题答图④综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3﹣或t=3+或t=2或t=2或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.6.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理。45\n分析:(1)根据高AG与正方形的边长相等,证明三角形相等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设出线段的长,结合方程思想,用数形结合得到结果.解答:(1)在Rt△ABE和Rt△AGE中,,,∴△ABE≌△AGE.∴.同理,.∴.(2).∵,,∴.∴.又∵,,∴△AMN≌△AHN.∴.∵,,∴.∴.∴.∴.ABCFDEG(图①)MN(3)由(1)知,,.设,则,.∵,∴.解这个方程,得,(舍去负根).∴.∴.在(2)中,,,∴.设,则.∴.即.点评:本题考查里正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.7.45\n如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.考点:梯形;全等三角形的判定与性质;等边三角形的判定与性质;菱形的判定与性质。专题:几何综合题。分析:(1)根据AB=AD及AE为∠BAD的平分线可得出∠1=∠2,从而证得△BAE≌△DAE,这样就得出四边形ABED为平行四边形,根据菱形的判定定理即可得出结论;(2)过点D作DF∥AE交BC于点F,可得出DF=AE,AD=EF=BE,再由CE=2BE得出DE=EF,从而结合∠ABC=60°,AB∥DE可判断出结论.解答:(1)证明:如图,∵AE平分∠BAD,∴∠1=∠2,∵AB=AD,AE=AE,∴△BAE≌△DAE,∴BE=DE,∵AD∥BC,∴∠2=∠3=∠1,∴AB=BE,∴AB=BE=DE=AD,∴四边形ABED是菱形.(2)解:△CDE是直角三角形.如图,过点D作DF∥AE交BC于点F,则四边形AEFD是平行四边形,∴DF=AE,AD=EF=BE,∵CE=2BE,∴BE=EF=FC,∴DE=EF,45\n又∵∠ABC=60°,AB∥DE,∴∠DEF=60°,∴△DEF是等边三角形,∴DF=EF=FC,∴△CDE是直角三角形.点评:本题综合考查了梯形、全等三角形的判定及性质、菱形的判定及性质,难度较大,解答本题需要掌握①有一组邻边相等的平行四边形是菱形,②直角三角形中,斜边的中线等于斜边的一半.8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定。分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.解答:(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠AEF=∠EAC,∵AF=CE=AE,45\n∴∠F=∠AEF=∠EAC=∠ECA.又∵AE=EA,∴△AEC≌△EAF,∴EF=CA,∴四边形ACEF是平行四边形.(2)当∠B=30°时,四边形ACEF是菱形.理由是:∵∠B=30°,∠ACB=90°,∴AC=,∵DE垂直平分BC,∴BE=CE,又∵AE=CE,∴CE=,∴AC=CE,∴四边形ACEF是菱形.点评:本题主要考查了平行四边形的判定以及菱形的判定方法,正确掌握判定定理是解题的关键.9.如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.考点:矩形的性质;含30度角的直角三角形;勾股定理;菱形的性质。专题:综合题。分析:(1)根据AB的长结合三角函数的关系可得出AC的长度.45\n(2)根据矩形的对角线互相平分可得出△OBC为等腰三角形,从而利用外角的知识可得出∠AOB的度数.(3)分别求出△OBC和△BCE的面积,从而可求出菱形OBEC的面积.解答:解(1)在矩形ABCD中,∠ABC=90°,∴Rt△ABC中,∠ACB=30°,∴AC=2AB=4.(2)在矩形ABCD中,∴AO=OA=2,又∵AB=2,∴△AOB是等边三角形,∴∠AOB=60°.(3)由勾股定理,得BC=,.,所以菱形OBEC的面积是2.点评:本题考查矩形的性质、菱形的性质及勾股定理的知识,综合性较强,注意一些基本知识的掌握是关键.10.如图,在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°;延长CD到点E,连接AE,使得∠E=∠C.(1)求证:四边形ABDE是平行四边形;(2)若DC=12,求AD的长.45\n考点:等腰梯形的性质;含30度角的直角三角形;平行四边形的判定与性质.专题:计算题;证明题.分析:(1)可证明AB∥ED,AE∥BD,即可证明四边形ABDE是平行四边形;由∠ABC=120°,∠C=60°,得AB∥ED;∠E=∠C=∠BDC=30°,得AE∥BD;(2)可证得四边形ABCD是等腰梯形,AD=BC,易证△BDC是直角三角形,可得BC=DC=6.解答:证明:(1)∵∠ABC=120°,∠C=60°,∴∠ABC+∠BCD=180°,∴AB∥DC,即AB∥ED;又∠C=60°,∠E=∠C,∠BDC=30°,∴∠E=∠BDC=30°,∴AE∥BD,∴四边形ABDE是平行四边形;解:(2)∵AB∥DC,∴四边形ABCD是梯形,∵DB平分∠ADC,∠BDC=30°,∴∠ADC=∠BCD=60°,∴四边形ABCD是等腰梯形;∴BC=AD,∵在△BCD中,∠C=60°,∠BDC=30°,∴∠DBC=90°,又DC=12,∴AD=BC=DC=6.点评:本题考查了知识点较多,有等腰梯形、直角三角形的性质以及平行四边形的判定和性质,只有牢记这些知识才能熟练运用.45\n11.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.考点:菱形的判定;平行线的判定;全等三角形的判定与性质;平行四边形的性质。专题:证明题。分析:(1)根据已知条件证明∴△ADE≌△CBF,即∠3=∠CBF,再根据角平分线的性质可知∴∠BDE=∠FBD,根据内错角相等,即可证明DE∥BF,(2)根据三角形内角和为180°,可以得出∠1=∠2,再根据邻边相等的平行四边形是菱形,从而得出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF,∴△ADE≌△CBF,∴∠3=∠CBF,∵∠ADB=∠CBD,∴∠2=∠FBD,∴DE∥BF,(2)∵∠G=90°,∴四边形AGBD是矩形,∠ADB=90°,∴∠2+∠3=90°,∴2∠2+2∠3=180°.∴∠1=∠2,∠3=∠4.∴DE=AE=BE,∵AB∥CD,DE∥BF,∴四边形DEBF是菱形.点评:本题主要考查了平行四边形的性质、相似三角形的判定、平行的判定、菱形的判定,比较综合,难度适中.10.45\n12.以四边形ABCD的边AB.BC.CD.DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E.F.G.H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形;菱形的判定与性质.专题:证明题.分析:(1)根据等腰直角三角形得到角都是直角,且边都相等即可判断答案;(2)①∠HAE=90°+a,根据平行四边形的性质得出,∠BAD=180°﹣a,根据△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;②根据△AEB和△DGC是等腰直角三角形,得出AE=AB,DC=CD,平行四边形的性质得出AB=CD,求出∠HDG=90°+a=∠HAE,证△HAE≌△HDC,即可得出HE=HG;③由②同理可得:GH=GF,FG=FE,推出GH=GF=EF=HE,得出菱形EFGH,证△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出结论.解答:(1)答:四边形EFGH的形状是正方形.(2)解:①∠HAE=90°+a,在平行四边形ABCD中AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣a,∵△HAD和△EAB是等腰直角三角形,∴∠HAD=∠EAB=45°,45\n∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+a,答:用含α的代数式表示∠HAE是90°+a.②证明:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DC=CD,在平行四边形ABCD中,AB=CD,∴AE=DG,∵△HAD和△GDC是等腰直角三角形,∴∠HDA=∠CDG=45°,∴∠HDG=∠HDA+∠ADC+∠CDG=90°+a=∠HAE,∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDC,∴HE=HG.③答:四边形EFGH是正方形,理由是:由②同理可得:GH=GF,FG=FE,∵HE=HG,∴GH=GF=EF=HE,∴四边形EFGH是菱形,∵△HAE≌△HDG,∴∠DHG=∠AHE,∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.45\n点评:本题主要考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.13.如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.考点:平行四边形的性质;全等三角形的判定与性质。专题:证明题。分析:根据平行四边形的性质先证明△DEC≌△FEB,然后根据AB=CD,运用等量代换即可得出结论.解答:解:由ABCD是平行四边形得AB∥CD,∴∠CDE=∠F,∠C=∠EBF.又∵E为BC的中点,∴△DEC≌△FEB,∴DC=FB.又∵AB=CD,∴AB=BF.点评:本题考查了平行四边形的性质及全等三角形的判定,难度一般,对于此类题目关键是熟练掌握并运用平行四边形的性质.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.45\n考点:正方形的性质;全等三角形的判定与性质;勾股定理。分析:(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB从而GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE则在△BDH中,∠DHB=90°所以EB⊥GD;(3)设BD与AC交于点O,由AB=AD=2在Rt△ABD中求得DB,所以得到结果.解答:(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°﹣(∠HDB+∠HBD)=180°﹣90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB=,∴EB=GD=.点评:本题考查了正方形的性质,考查了利用其性质证得三角形全等,并利用证得的条件求得边长.15.45\n如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定。分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.解答:(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠AEF=∠EAC,∵AF=CE=AE,∴∠F=∠AEF=∠EAC=∠ECA.又∵AE=EA,∴△AEC≌△EAF,∴EF=CA,∴四边形ACEF是平行四边形.(2)当∠B=30°时,四边形ACEF是菱形.理由是:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴BE=CE,又∵AE=CE,45\n∴CE=AB,∴AC=CE,∴四边形ACEF是菱形.点评:本题主要考查了平行四边形的判定以及菱形的判定方法,正确掌握判定定理是解题的关键.16.如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).考点:菱形的性质;全等三角形的判定与性质;解直角三角形。分析:(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP;(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值.解答:解:(1)∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=120°,∴AD=BD,∠CBD=∠A=60°,∵AP=BQ,∴△BDQ≌△ADP(SAS);(2)过点Q作QE⊥AB,交AB的延长线于E,∵△BDQ≌△ADP,∴BQ=AP=2,∵AD∥BC,45\n∴∠QBE=60°,∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1,∵AB=AD=3,∴PB=AB-AP=3-2=1,∴PE=PB+BE=2,∴在Rt△PQE中,PQ==,∴cos∠BPQ===.点评:此题考查了菱形的性质与勾股定理、三角函数的性质.此题难度适中,解题的关键是数形结合思想的应用.17.如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:DF=BE.考点:平行四边形的性质;全等三角形的判定与性质。专题:证明题。分析:根据平行四边形的对边相等得出BC=AD,再由两直线平行内错角相等可得出∠BCA=∠DAC,从而可判断出△CEB≌△AFD,利用全等三角形的性质即可得出结论.解答:证明:∵四边形ABCD是平行四边形.∴BC=AD,BC∥AD.∴∠BCA=∠DAC∵BE⊥AC,DE⊥AC.45\n∴∠CEB=∠AFD=90°.∴△CEB≌△AFD∴BE=DF.点评:本题考查了平行四边形的性质,全等三角形的判定和性质,属于基础题,关键是利用全等的知识证明线段的相等,这是经常用到的,同学们要注意掌握.18.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质。【分析】从图(1)中寻找证明结论的思路:延长FE交DC延长线于M,连MG.构造出△GFE≌△GMC.易得结论;在图(2)、(3)中借鉴此解法证明.【解答】解:(1)EG=CG,EG⊥CG.(2分)(2)EG=CG,EG⊥CG.(2分)证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.45\n∵∠EMC=90°,FG=DG,∴MG=FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.∴△GFE≌△GMC.∴EG=CG,∠FGE=∠MGC.(2分)∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.(2分)【点评】此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.19.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.考点:勾股定理的逆定理;全等三角形的判定与性质。45\n分析:根据题意中的△ABD为等腰直角三角形,显然应分为三种情况:∠ABD=90°,∠BAD=90°,∠ADB=90°.然后巧妙构造辅助线,出现全等三角形和直角三角形,利用全等三角形的性质和勾股定理进行求解.解答:解:∵AC=4,BC=2,AB=2,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,易求CD=2;如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,易求CD=2;如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.易证△AFD≌△DEB,易求CD=3.点评:此题综合考查了全等三角形的判定和性质、勾股定理.20.如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,45\n(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.考点:正方形的性质;对顶角、邻补角;三角形内角和定理;全等三角形的判定与性质。专题:证明题。分析:(1)根据正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS即可证出结论;(2)根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,根据三角形的内角和定理求出即可.解答:(1)证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA,∵CE=CE,∴△BEC≌△DEC.(2)解:∵∠DEB=140°,∵△BEC≌△DEC,∴∠DEC=∠BEC=70°,∴∠AEF=∠BEC=70°,∵∠DAB=90°,∴∠DAC=∠BAC=45°,∴∠AFE=180°﹣70°﹣45°=65°.答:∠AFE的度数是65°.点评:本题主要考查对正方形的性质全等三角形的性质和判定,三角形的内角和定理,对顶角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.21.如图.矩形ABCD的对角线相交于点0.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为,求AC的长.45\n考点:矩形的性质;菱形的判定与性质;解直角三角形。分析:(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.解答:解:(1)∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形;(2)∵∠ACB=30°,∴∠DCO=90°﹣30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DE⊥OC于F,则CF=OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=,∴DF=x.∴OC•DF=8.∴x=2.∴AC=4×2=8.点评:本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.45\n矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的  相等;或者先证明四边形是菱形,在证明这个菱形有一个角是  .(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.考点:正方形的性质;平行四边形的性质;菱形的性质;矩形的性质.分析:(1)根据平行四边形、矩形、菱形、正方形之间的联系,即可求得答案;(2)由正方形的的判定定理,即可求得答案;(3)根据正方形的性质,即可的对角线相等,又由菱形面积计算公式,即可推导出对角线长为a的正方形面积是S=0.5a2.解答:解:(1)(2)邻边,直角;(3)正确.∵四边形ABCD是正方形,∴AC=BD=a,S正方形ABCD=AC•BD,45\n∴S=0.5a2.点评:此题考查了平行四边形、矩形、菱形、正方形之间的联系,正方形的性质.此题难度不大,解题的关键熟记定理.23.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG。(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长。【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】证明题;探究型.【分析】(1)先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG;(2)先根据勾股定理得出BD的长,进而得出BF的长,由图形翻折变换的性质得出CG=FG,设FG=x,则BG=8-x,再利用勾股定理即可求出x的值.【解答】45\n解:(1)∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,∵△BEH是△BAH翻折而成,∴∠1=∠2,,∠A=∠HEB=90°,AB=BE,∵△DGF是△DGC翻折而成,∴∠3=∠4,∠C=∠DFG=90°,CD=DF,∴△BEH与△DFG中,∠HEB=∠DFG,BE=DF,∠2=∠3,∴△BEH≌△DFG,(2)∵四边形ABCD是矩形,AB=6cm,BC=8cm,∴AB=CD=6cm,AD=BC=8cm,∴BD===10,∵由(1)知,BD=CD,CG=FG,∴BF=10-6=4cm,设FG=x,则BG=8-x,在Rt△BGF中,BG2=BF2+FG2,即(8-x)2=42+x2,解得x=3,即FG=3cm.【点评】本题考查的是图形翻折变换的性质及矩形的性质,全等三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.24.如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图。分析:(1)由已知证明DE.DG所在的三角形全等,再通过等量代换证明DE⊥DG;45\n(2)根据正方形的性质分别以点G.E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.解答:(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△GDA,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°,∴DE⊥DG.(2)如图.(3)四边形CEFK为平行四边形.证明:设CK.DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,45\n∴CK∥EF,∴四边形CEFK为平行四边形.(4).点评:此题考查的知识点是正方形的性质.全等三角形的判定和性质.平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂。25.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h3; (2)设正方形ABCD的面积为S,求证:S=(h2+h3)2+h12;(3)若,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.【考点】二次函数综合题;全等三角形的判定与性质;勾股定理;正方形的性质.【专题】综合题.【分析】(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,根据正方形的性质和平行线的性质,证△ABE≌△CDG即可;(2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,所以.(3)根据题意用h2关于h1的表达式代入S,即可求出h1取何范围是S的变化.【解答】解:(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,∵正方形ABCD,l1∥l2∥l3∥l445\n,∴AB=CD,∠ABE=∠BCH,∵∠BCH=∠CDG,∴∠ABE=∠CDG,∵∠AEB∠CGD,∴△ABE≌△CDG,∴AE=CG,即h1=h3,(2)∵正方形ABCD,∴AB=BC=CD=DA,∵∠AEB=∠DAF=∠BCH=∠CGD=90°,∠ABE=∠FAD=∠BCH=∠CDF,∴△AEB≌△DAF≌△BCH≌△CGD,且两直角边长分别为h1、h1+h2,∴四边形EFGH是边长为h2的正方形,∴,(3)由题意,得,所以,又,解得0<h1<,∴当0<h1<时,S随h1的增大而减小;当h1=时,S取得最小值;当<h1<时,S随h1的增大而增大.【点评】本题主要考查全等三角形的判定和性质、平行线的性质、直角三角形的性质,本题的关键在于做好辅助线,根据已知找到全等三角形即可26.已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.45\n考点:全等三角形的判定与性质;等边三角形的性质;菱形的性质。专题:几何综合题。分析:(1)此题只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判断两三角形全等得出∠ADB=∠AFC;(2)此题应先判断得出正确的等量关系,然后再根据△ABD≌△ACF即可证明;(3)此题只需补全图形后由图形即可得出∠AFC、∠ACB、∠DAC之间存在的等量关系.解答:解:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,∴△ABD≌△ACF,∴∠ADB=∠AFC,②结论:∠AFC=∠ACB+∠DAC成立.(2)结论∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC.证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.∴△ABD≌△ACF.∴∠ADC=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB-∠DAC.(3)补全图形如下图:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).点评:本题考查了全等三角形的判定与性质,综合性较强,同学们应好好掌握.45

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:25:05 页数:45
价格:¥3 大小:559.29 KB
文章作者:U-336598

推荐特供

MORE