首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
四川省成都市状元廊学校2022届中考数学思维方法讲义 第2讲 证明 四边形
四川省成都市状元廊学校2022届中考数学思维方法讲义 第2讲 证明 四边形
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第2讲证明四边形【今日目标】1、牢记四边形的有关性质及其判定;2、运用四边形的性质及判定进行有关计算与证明;3、数学思想方法的合理运用。【考点透视】1.平行四边形的性质及判定方法。2.矩形的性质及判定方法。3.菱形的性质及判定方法。4.正方形的性质及判定方法。5.梯形的概念及判定方法。6.梯形问题的转化。【数学思想方法】§Ⅰ梯形的常见辅助线的添加方法:通过添加辅助线,把梯形转化成平行四边形和三角形.(作高、平移腰、延腰、平移对角线、等积变化)§Ⅱ一招制胜——图形分离法【精彩知识】题型一:选择题【例1】如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则阴影部分的面积是()A.B.2C.3D.★考点感悟:●变式练习:1、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+12、如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是()A.8B.9C.10D.123、在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11-C.11+或11-D.11-或1+题型二:填空题【例2】如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD·DH中,正确的结论是.●变式练习:-8-\n1.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= .2、如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=。1题图2题图题型三:计算与证明Ⅰ常规试题【例3】如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求C点的位置.★考点感悟:Ⅱ新型试题【例4】(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=m:n,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).★考点感悟:【例5】如图1,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC-8-\n上,且∠BEF=∠A. (1)∠BEF=_____(用含α的代数式表示); (2)当AB=AD时,猜想线段ED、EF的数量关系,并证明你的猜想; (3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图2),求的值(用含m、n的代数式表示)。 ★考点感悟:【例6】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.★考点感悟:-8-\n【课后测试】1、如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°2、如图,在直角梯形ABCD中,AD//BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于()A.10B.11C.12D.133、如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.4、如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,对角线BD于F.点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.5、如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.-8-\n部分答案与提示:【例1】如图,设BF、CE相交于点M,∵菱形ABCD和菱形ECGF的边长分别为2和3,∴△BCM∽△BGF,∴,即。解得CM=1.2。∴DM=2﹣1.2=0.8。∵∠A=120°,∴∠ABC=180°﹣120°=60°。∴菱形ABCD边CD上的高为2sin60°=2×,菱形ECGF边CE上的高为3sin60°=3×。∴阴影部分面积=S△BDM+S△DFM=×0.8×+×0.8×。故选A。【例3】解:(1)∵α=60°,BC=10,∴sinα=,即sin60°=,解得CE=。(2)①存在k=3,使得∠EFD=k∠AEF。理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD。在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF。在△AFG和△CFD中,∵∠G=∠DCF,∠G=∠DCF,AF=FD,∴△AFG≌△CFD(AAS)。∴CF=GF,AG=CD。∵CE⊥AB,∴EF=GF。∴∠AEF=∠G。∵AB=5,BC=10,点F是AD的中点,∴AG=5,AF=AD=BC=5。∴AG=AF。∴∠AFG=∠G。在△AFG中,∠EFC=∠AEF+∠G=2∠AEF,又∵∠CFD=∠AFG,∴∠CFD=∠AEF。∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,因此,存在正整数k=3,使得∠EFD=3∠AEF。②设BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2。在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x。∵CF=GF(①中已证),∴CF2=(CG)2=CG2=(200﹣20x)=50﹣5x。∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+。∴当x=,即点E是AB的中点时,CE2﹣CF2取最大值。【例4】解:(1)HD:GC:EB=1::1。(2)连接AG、AC,∵△ADC和△AHG都是等腰直角三角形,∴AD:AC=AH:AG=1:,∠DAC=∠HAG=45°。∴∠DAH=∠CAG。∴△DAH∽△CAG。∴HD:GC=AD:AC=1:。∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。又∵AD=AB,AH=AE,∴△DAH≌△BAE(SAS)。∴HD=EB。∴HD:GC:EB=1::1。(3)有变化,HD:GC:EB=。【考点】正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理。【分析】(1)连接AG,∵正方形AEGH的顶点E、H在正方形ABCD的边上,∴∠GAE=∠CAB=45°,AE=AH,AB=AD。∴A,G,C共线,AB-AE=AD-AH,∴HD=BE。∵∴GC=AC-AG=AB-AE=(AB-AE)=BE。-8-\n∴HD:GC:EB=1::1。(2)连接AG、AC,由△ADC和△AHG都是等腰直角三角形,易证得△DAH∽△CAG与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值。(3)连接AG、AC,∵矩形AEGH的顶点E、H在矩形ABCD的边上,DA:AB=HA:AE=m:n,∴∠ADC=∠AHG=90°,∴△ADC∽△AHG。∴AD:AC=AH:AG=,∠DAC=∠HAG。∴∠DAH=∠CAG。∴△DAH∽△CAG。∴HD:GC=AD:AC=。∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。∵DA:AB=HA:AE=m:n,∴△ADH∽△ABE。∴DH:BE=AD:AB=m:n。∴HD:GC:EB=。【例5】解:(1)180°-2α。(2)EB=EF。证明如下:连接BD交EF于点O,连接BF。∵AD∥BC,∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α。∵AB=AD,∴∠ADB=(180°-∠A)=α。∴∠BDC=∠ADC-∠ADB=180°-2α。由(1)得:∠BEF=180°-2α=∠BDC。又∵∠EOB=∠DOF,∴△EOB∽△DOF。∴,即。∵∠EOD=∠BOF,∴△EOD∽△BOF。∴∠EFB=∠EDO=α。∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB。∴EB=EF。(3)延长AB至G,使AG=AE,连接BE,GE,则∠G=∠AEG=。∵AD∥BC,∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC。∴∠EDF=∠G。∵∠BEF=∠A,∴∠BEF=∠GBC。∴∠GBC+∠EBC=∠DEB+∠BEF,即∠EBG=∠FED。∴△DEF∽△GBE。∴。∵AB=mDE,AD=nDE,∴AG=AE=(n+1)DE。∴BG=AG-AB=(n+1)DE-mDE=(n+1-m)DE。∴。【考点】梯形的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的性质。【分析】(1)由梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,根据平行线的性质,易求得∠A的度数,又由∠BEF=∠A,即可求得∠BEF的度数:∵梯形ABCD中,AD∥BC,∴∠A+∠ABC=180°。∴∠A=180°-∠ABC=180°-2α。又∵∠BEF=∠A,∴∠BEF=∠A=180°-2α。(2)连接BD交EF于点O,连接BF,由AB=AD,易证得△EOB∽△DOF,根据相似三角形的对应边成比例,可得,从而可证得△EOD∽△BOF,又由相似三角形的对应角相等,易得∠EBF=∠EFB=α,即可得EB=EF。(3)延长AB至G,使AG=AE,连接BE,GE,易证得△DEF∽△GBE,然后由相似三角形的对应边成比例,即可求得的值。解析:延长DF,BA交于G,可证△CEM≌△CFM,△CDF≌△BGF,通过线段的简单运算,即可求得。【例6】【解析】(1)根据折叠前后的相等线段,先在Rt△OEC中求出OE长,再在Rt△ADE中运用勾股定理构建方程求AD.然后将O,D,C三点的坐标代入抛物线y=ax2+bx+c求出a,b,c即可.(2)分别用含t的代数式表示CQ和CP的长,再利用相似三角形产生的相似比构建含t的方程,解之即得.(3)从两定点C,E形成的边CE为平行四边形的边和对角线两个角度分析求解.-8-\n【答案】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意得,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10-6=4.设AD=x,则BD=DE=8-x,由勾股定理,得x2+42=(8-x)2.解之得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点O(0,0),∴c=0.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),∴解之得∴抛物线的解析式为:y=-x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE.由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,PC=10-2t.当∠PQC=∠DAE=90°时,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°时,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P,Q,C为顶点的三角形与△ADE相似.(3)存在.M1(-4,-32),N1(4,-38).M2(12,-32),N2(4,-26).M3(4,),N3(4,-).5、解:(1)∵四边形ABCD是菱形,∴△AOB为直角三角形,且OA=AC=1,OB=BD=3。在Rt△AOB中,由勾股定理得:AB=。 (2)①△AEF是等边三角形。理由如下:∵由(1)知,菱形边长为2,AC=2,∴△ABC与△ACD均为等边三角形。∴∠BAC=∠BAE+∠CAE=60°。又∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF。在△ABE与△ACF中,∵∠BAE=∠CAF,AB=AC=2,∠EBA=∠FCA=60°,∴△ABE≌△ACF(ASA)。∴AE=AF。∴△AEF是等腰三角形。又∵∠EAF=60°,∴△AEF是等边三角形。②BC=2,E为四等分点,且BE>CE,∴CE=,BE=。由①知△ABE≌△ACF,∴CF=BE=。∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°(三角形内角和定理),∠AEG=∠FCG=60°(等边三角形内角),∠EGA=∠CGF(对顶角),∴∠EAC=∠GFC。在△CAE与△CFG中,∵∠EAC=∠GFC,∠ACE=∠FCG=60°,∴△CAE∽△CFG。∴,即。解得:CG=。【考点】旋转的性质,菱形的性质,相似三角形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理。【分析】(1)根据菱形的性质,确定△AOB为直角三角形,然后利用勾股定理求出边AB的长度。-8-\n(2)①确定一对全等三角形△ABE≌△ACF,得到AE=AF,再根据已知条件∠EAF=60°,可以判定△AEF是等边三角形。②确定一对相似三角形△CAE∽△CFG,由对应边的比例关系求出CG的长度。-8-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
四川省成都市状元廊学校2022届中考数学思维方法讲义 第6讲 专题训练
四川省成都市状元廊学校2022届中考数学思维方法讲义 第4讲 反比例函数 应用问题
四川省成都市状元廊学校2022届中考数学思维方法讲义 第3讲 反比例函数 性质与定义
四川省成都市状元廊学校2022届中考数学思维方法讲义 第1讲 证明 三角形
四川省成都市状元廊学校2022届中考数学思维方法讲义 第15讲 几何
四川省成都市状元廊学校2022届中考数学思维方法讲义 第14讲 代数
四川省成都市状元廊学校2022届中考数学思维方法讲义 第13讲 直线和圆的位置关系
四川省成都市状元廊学校2022届中考数学思维方法讲义 第12讲 圆心角与圆周角
四川省成都市状元廊学校2022届中考数学思维方法讲义 第11讲 圆的有关概念
四川省成都市状元廊学校2022届中考数学思维方法讲义 第10讲 二次函数的综合运用
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:47:38
页数:8
价格:¥3
大小:452.01 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划