首页

江苏省无锡新领航教育咨询有限公司2022届中考数学数与式中典型例题串讲二

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

数与式中典型例题串讲二课前集训巩固提高1已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.2个B.3个C.4个D.5个【答案】B.【解析】试题分析:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=-1时,y=a-b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=-=1,即a=-,代入得9(-)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),正确.③④⑤正确.故选B.考点:二次函数图象与系数的关系.2.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()【答案】B【解析】试题分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致由解析式可得:抛物线对称轴x=0;18\nA、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误考点:反比例函数、二次函数的图象及性质点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求3.若互为相反数,互为倒数,则________.【答案】-1.【解析】试题分析:根据题意得:,,则原式=0﹣1=﹣1.故答案为:﹣1.考点:1.有理数的混合运算;2.相反数;3.倒数.4.若x2+2(a-3)x+16是完全平方式,则a=.【答案】-1或7【解析】试题分析:本题考查的是完全平方式,这里首末两项是x和4的平方,那么中间项为加上或减去x和4的乘积的2倍,故2(a-3)=±8,解得a的值即可.试题解析:由于(x±4)2=x2±8x+16=x2+2(a-3)x+16,∴2(a-3)=±8,解得a=-1或a=7.考点:完全平方式.5.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如:取n=26,则:若,则第201次“F”运算的结果是.【答案】.【解析】试题分析:根据题意:,所以,.所以运算结果为.考点:1阅读新教材;2.规律.6.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是____________.(2)如果,满足条件的所有正整数x有____________.【答案】-3≤a≤-25,6【解析】18\n试题分析:(1)根据[a]=-2,得出-3<a≤-2,求出a的解即可;(2)根据题意得出3≤﹤4,求出x的取值范围,从而得出满足条件的所有正整数的解.考点:一元一次不等式组的应用点评:此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.7.已知三角形的两边长是方程x2-5x+6=0的两个根,则该三角形的周长的取值范围是.【答案】6<<10【解析】试题分析:∵,∴(x﹣2)(x﹣3)=0,∴x=2或x=3,即三角形的两边长是2和3,∴第三边a的取值范围是:1<a<5,∴该三角形的周长的取值范围是6<<10.考点:解一元二次方程-因式分解法;三角形三边关系点评:本题考查了用因式分解法解一元二次方程的方法:把方程左边分解成两个一次式的乘积,右边为0,从而方程就转化为两个一元一次方程,解一元一次方程即可.也考查了三角形三边的关系:三角形任意两边之和大于第三边8.若满足不等式的整数k只有一个,则正整数N的最大值.【答案】112;【解析】试题分析:已知,则8n+8k<15,解得k<,且,则7n+7k>6m,解得k>所以<k<通分得。又因为k只有一个。∴只有n=112时,考点:不等式点评:本题难度较大,主要考查学生对不等式知识点的掌握。最值问题突破1如图,E是边长为l的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值为()A.B.C.D.【答案】A【解析】18\n试题分析:连接BP,利用面积法求解,PQ+PR的值等于C点到BE的距离,即正方形对角线的一半解:连接BP,过C作CM⊥BD,∴即又∵∴∴,∵BE=BC=1且正方形对角线,又BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴,即PQ+PR值是.考点:正方形的性质点评:本题的解题关键是作出正确的辅助线,利用全等三角形的判定和性质的应用,来化简题目2如图所示,MN是圆O中一条固定的弦,劣弧MN的度数为1200,点C是圆O上一个动点(不与M、N重合)。连接MC、NC,D、E分别是NC和MC的中点,直线DE交圆O于点A、B。已知圆O的半径为,那么在点C的运动过程中AE+BD的最小值为。【答案】18\n【解析】试题解析:解:如下图所示,∵点D、E分别是NC、MC的中点,∴点C在劣弧MN的中点时,AB的长度最小,此时DE=MN,连接OA、OM,连接OC与MN、AB分别交于点F、G,∵劣弧MN的度数是120°,∴∠OMN=(180°-120°)=30°,∵⊙的半径是,∴OF=OM=,MF=×=,∵D、E分别是NC、MC的中点,∴FG=(OC-OF)==,∴OG=OF+FG==,在Rt△AOG中,AG===,∴AE+BD=2AG-DE=2×-=.考点:三角形的中位线定理、勾股定理、圆心角、弧、弦的关系点评:本题主要考查了三角形的中位线定理、勾股定理、圆心角、弧、弦的关系,解决本题的关键是判断出当点C在劣弧MN的中点时AE+BD的值最小.3如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.18\n(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.【答案】解:(1)圆锥的高=,底面圆的周长等于:2π×2=,解得:n=120°;(2)连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD=,AC=2AD=,即这根绳子的最短长度是.【解析】试题分析:(1)根据勾股定理直接求出圆锥的高,再利用圆锥侧面展开图弧长与其底面周长的长度关系,求出侧面展开图中∠ABC的度数即可;(2)首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.考点:圆锥的计算;勾股定理;平面展开-最短路径问题.点评:此题主要考查了圆锥的计算、勾股定理、平面展开-最短路径问题.得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.经典压轴题突破1锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为18\n.(1)中边上高;(2)当恰好落在边上(如图1);求正方形的边长(3)当在外部时(如图2),求关于的函数关系式(写出的取值范围),并求出为何值时最大,最大值是多少?【答案】解:(1)∵S△ABC=12,∴,又BC=6,∴AD=4;(2)设AD与MN相交于点H,∵MN∥BC,∴△AMN∽△ABC,∴,即,解得,x=,∴当x=时正方形MPQN的边P恰好落在BC边上;(3)设MP、NQ分别与BC相交于点E、F,18\n设HD=a,则AH=4﹣a,由,得,解得,a=,∵矩形MEFN的面积=MN×HD,∴(2.4<x≤6)当x=3时,y取最大值为6【解析】试题分析:(1)利用三角形的面积公式,三角形的面积=×底×高计算即可;(2)根据△AMN与△ABC相似,相似三角形对应高的比等于相似比列式计算;(3)设正方形在△ABC内的边长为a,也就是△ABC的高在正方形内的长度,然后利用同(2)的运算,计算出a的长度,再利用矩形的面积公式进行解答考点:相似三角形的判定与性质;正方形的性质2已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).18\n【答案】(1)点P的坐标为(,3)(2)(3)4+2或6【解析】试题分析:(1)由切线的性质可得∠MPO=90°,根据勾股定理可求出PO,然后由面积法可求出PK,然后运用勾股定理可求出OK,就可得到点P的坐标;(2)可设顶点为(0,6)的抛物线的解析式为y=ax2+6,然后将点P的坐标代入就可求出抛物线的解析式;(3)直线y=m与⊙M相切有两种可能,只需对这两种情况分别讨论就可求出对应多边形的面积.试题解析:解:(1)如图1,∵⊙M与OP相切于点P,∴MP⊥OP,即∠MPO=90°.∵点M(0,4)即OM=4,MP=2,∴OP=2.∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,∴OQ=OP,∠POK=∠QOK.∴OK⊥PQ,QK=PK.∴PK===.∴OK==3.∴点P的坐标为(,3).(2)如图2,设顶点为(0,6)的抛物线的解析式为y=ax2+6,18\n∵点P(,3)在抛物线y=ax2+6上,∴3a+6=3.解得:a=﹣1.则该抛物线的解析式为y=﹣x2+6.(3)当直线y=m与⊙M相切时,则有=2.解得;m1=2,m2=6.①m=2时,如图3,则有OH=2.当y=2时,解方程﹣x2+6=2得:x=±2,则点C(2,2),D(﹣2,2),CD=4.同理可得:AB=2.则S梯形ABCD=(DC+AB)•OH=(4+2)×2=4+2.②m=6时,如图4,此时点C、点D与点N重合.S△ABC=AB•OC=×2×6=6.综上所述:点A、B、C、D围成的多边形的面积为4+2或6考点:切线的性质,勾股定理,二次函数的图像与性质,梯形及三角形的面积18\n3如图,AB是⊙O的直径,点C在⊙O上,∠BAC=43o,点P在线段OB上运动,设∠ACP=x,则x的取值范围是。【答案】43°≤x≤90°【解析】试题分析:分别从若点P与点O重合与若点P与点B重合去分析求解即可求得答案解:若点P与点O重合,∵OA=OC,∴x=∠ACP=∠BAC=43°;若点P与点B重合,∵AB是直径,∴x=∠ACB=90°,∴x的取值范围是:43°≤x≤90°考点:圆周角定理点评:此题考查了圆周角定理与等腰三角形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用4如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(2,0)和点B(-6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与轴交于点M,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标.(3)设点Q是抛物线对称轴上的一个动点,当点Q满足最大时,求出Q点的坐标.(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=-x2-2x+6;(2)P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)当Q在(-2,12)的位置时,|QB-QC|最大;(4)最大值为;E坐标为(-3,).【解析】18\n试题分析:(1)将点A(2,0)和点B(-6,0)分别代入y=ax2+bx+6,得到关于a、b的二元一次方程组,解方程组求出a、b的值,进而得到抛物线的解析式;(2)根据(1)的函数解析式得出抛物线的对称轴为x=-2,再求出M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,6),根据M、C的坐标求出CM的距离.然后分三种情况进行讨论:①CP=PM;②CM=MP;③CM=CP;(3)由抛物线的对称性可知QB=QA,故当Q、C、A三点共线时,|QB-QC|最大,连结AC并延长,交对称轴于点Q,利用待定系数法求出直线AC的解析式,再将x=-2代入,求出y的值,进而得到Q点的坐标;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO-OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.试题解析:(1)由题知:,解得:,故所求抛物线解析式为:y=-x2-2x+6;(2)∵抛物线解析式为:y=-x2-2x+6,∴对称轴为x=,设P点坐标为(-2,t),∵当x=0时,y=6,∴C(0,6),M(-2,0),∴CM2=(-2-0)2+(0-6)2=40.①当CP=PM时,(-2)2+(t-6)2=t2,解得t=,∴P点坐标为:P1(-2,);②当CM=PM时,40=t2,解得t=±2,∴P点坐标为:P2(-2,2)或P3(-2,-2);③当CM=CP时,由勾股定理得:40=(-2)2+(t-6)2,解得t=12,∴P点坐标为:P4(-2,12).综上所述,存在符合条件的点P,其坐标为P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)∵点A(2,0)和点B(-6,0)关于抛物线的对称轴x=-2对称,18\n∴QB=QA,∴|QB-QC|=|QA-QC|,要使|QB-QC|最大,则连结AC并延长,与直线x=-2相交于点Q,即点Q为直线AC与直线x=-2的交点,设直线AC的解析式为y=kx+m,∵A(2,0),C(0,6),∴,解得,∴y=-3x+6,当x=-2时,y=-3×(-2)+6=12,故当Q在(-2,12)的位置时,|QB-QC|最大;(4)过点E作EF⊥x轴于点F,设E(n,-n2-2n+6)(-6<n<0),则EF=-n2-2n+6,BF=n+6,OF=-n,S四边形BOCE=BF•EF+(OC+EF)•OF=(n+6)•(-n2-2n+6)+(6-n2-2n+6)•(-n)=-n2-9n+18=-(n+3)2+,所以当n=-3时,S四边形BOCE最大,且最大值为此时,点E坐标为(-3,).考点:二次函数综合题.5.(9分)(2022•云南)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.18\n(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.【答案】(1)y=x﹣5(2)点M的坐标为(,0)或(,0)(3)四边形DEPF面积的最小值为【解析】试题分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解:(1)过点P作PH∥OA,交OC于点H,如图1所示.18\n∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.18\n∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE18\n=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.18\n点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.18

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:24:33 页数:18
价格:¥3 大小:342.09 KB
文章作者:U-336598

推荐特供

MORE