首页

2023届北师版高考数学一轮第八章立体几何与空间向量课时规范练35直线、平面平行的判定与性质(Word版附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

课时规范练35 直线、平面平行的判定与性质基础巩固组1.下列说法正确的是(  )A.若两条直线与同一条直线所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线分别平行于两个相交平面,则一定平行它们的交线D.若两个平面都平行于同一条直线,则这两个平面平行2.(2021浙江宁海中学)已知三个不同的平面α,β,γ和直线m,n,若α∩γ=m,β∩γ=n,则“α∥β”是“m∥n”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,H,G分别为BC,CD的中点,则(  )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形4.(2021湖南雅礼中学二模)如图,E是正方体ABCD-A1B1C1D1的棱C1D1上的一点E(不与端点重合),BD1∥平面B1CE,则(  )A.BD1∥CEB.AC1⊥BD1C.D1E=2EC1D.D1E=EC15.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于点C,E和D,F.若AC=2,CE=3,BF=4,则BD的长为(  )A.B.C.D.6.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是(  )①FG∥平面AA1D1D ②EF∥平面BC1D1 ③FG∥平面BC1D1 ④平面EFG∥平面BC1D1A.①③B.①④C.②③D.②④7.过正方体ABCD-A1B1C1D1的三个顶点A1,C1,B的平面与底面ABCD所在平面的交线为l,则l,与A1C1的位置关系是     . 8.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为     . 9.已知四棱柱ABCD-A1B1C1D1中,AD∥BC,AD=2BC,E,F分别为CC1,DD1的中点.求证:平面BEF∥平面AD1C1.综合提升组10.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,P为所在棱的中点,则在这四个正方体中,直线AB与平面MNP不平行的是(  ),11.如图,在长方体ABCD-A1B1C1D1中,AD=DD1=1,AB=,E,F,G分别为AB,BC,C1D1的中点,点P在平面ABCD内,若直线D1P∥平面EFG,则线段D1P长度的最小值是(  )A.B.C.D.12.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB=    . 13.(2021山东临沂月考)在正方体ABCD-A1B1C1D1中,E为棱CD上一点,且CE=2DE,F为棱AA1的中点,且平面BEF与DD1交于点G,与AC1交于点H,则=     ,=     . 14.在正方体ABCD-A1B1C1D1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.,(1)若A1C交平面EFBD于点R,证明:P,Q,R三点共线;(2)线段AC上是否存在点M,使得平面B1D1M∥平面EFBD,若存在,确定M的位置;若不存在,说明理由.创新应用组15.(2021北京朝阳二模)已知棱长为1的正方体ABCD-A1B1C1D1,M是BB1的中点,动点P在正方体内部或表面上,且MP∥平面ABD1,则动点P的轨迹所形成区域的面积是(  )A.B.C.1D.216.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在线段AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是(  ),,课时规范练35 直线、平面平行的判定与性质1.C 解析:由两条直线与同一条直线所成的角相等,可知两条直线可能平行,可能相交,也可能异面,故A错误;若一个平面内有三个点到另一个平面的距离相等,则这两个平面可能平行或相交,故B错误;设α∩β=l,m∥α,m∥β,利用线面平行的性质定理,在平面α中存在直线a∥m,在平面β中存在直线b∥m,所以可知a∥b,根据线面平行的判定定理,可得b∥α,然后根据线面平行的性质定理可知b∥l,所以m∥l,故C正确;若两个平面都平行于同一条直线,则两个平面可能平行,也可能相交,故D错误.故选C.2.A 解析:根据面面平行的性质定理,可知当“α∥β”时,有“m∥n”,故充分性成立;反之,当m∥n时,α,β可能相交(如图),故必要性不成立.所以“α∥β”是“m∥n”的充分不必要条件.故选A.3.B 解析:如图,由题意,得EF∥BD,且EF=BD,HG∥BD,且HG=BD,∴EF∥HG,EF≠HG,∴四边形EFGH是梯形.又EF∥BD,EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.故选B.4.D 解析:如图,设B1C∩BC1=O,则平面BC1D1∩平面B1CE=OE.∵BD1∥平面B1CE,根据线面平行的性质可得D1B∥EO,∵O为B1C的中点,∴E为C1D1中点,∴D1E=EC1.故选D.5.C 解析:由AB∥α∥β,易证,,即,所以BD=.故选C.6.A 解析:∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵BC1∥AD1,∴FG∥AD1.∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D.故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交.故②错误;∵E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵FG⊄平面BC1D1,BC1⊂平面BC1D1,∴FG∥平面BC1D1.故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.故选A.7.平行 解析:因为过A1,C1,B三点的平面与底面A1B1C1D1的交线为A1C1,与底面ABCD的交线为l,且正方体的两底面互相平行,则由面面平行的性质定理知l∥A1C1.8.平行四边形 解析:因为平面ABFE∥平面CDHG,平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.9.证明取AD的中点G,连接BG,FG.因为E,F分别为CC1,DD1的中点,所以C1D1

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-07-21 12:07:56 页数:10
价格:¥3 大小:467.58 KB
文章作者:随遇而安

推荐特供

MORE