福建专用2022高考数学一轮复习课时规范练40直线平面平行的判定与性质理新人教A版.docx
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
课时规范练40 直线、平面平行的判定与性质一、基础巩固组1.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD∥平面FGH.2.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.(1)求证:平面MNE∥平面ACP;(2)求四面体A-MBC的体积.〚导学号21500747〛3.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.9,4.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE∥平面A1MC1;(2)若AA1=1,求三棱锥A-MA1C1的体积.5.如图,在多面体ABCDE中,平面ABE⊥平面ABCD,△ABE是等边三角形,四边形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=12BC=2,M是EC的中点.(1)求证:DM∥平面ABE;(2)求三棱锥M-BDE的体积.〚导学号21500748〛二、综合提升组6.如图,在三棱柱ABC-A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.9,7.如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1,BC的中点.(1)证明:DE∥平面A1B1C;(2)若AB=2,∠BAC=60°,求三棱锥A1-BDE的体积.〚导学号21500749〛8.在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=2.(1)求证:MN∥平面PDC;(2)求点C到平面PBD的距离.9,三、创新应用组9.如图,三棱柱ABC-A1B1C1中,D是AA1的中点,E为BC的中点.(1)求证:直线AE∥平面BC1D;(2)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点E到平面BC1D的距离.10.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A'EF位置,使得A'C=26.(1)求五棱锥A'-BCDFE的体积;(2)在线段A'C上是否存在一点M,使得BM∥平面A'EF?若存在,求A'M;若不存在,请说明理由.〚导学号21500750〛9,课时规范练40 直线、平面平行的判定与性质1.证法一连接DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.2.(1)证明∵M,N,E分别是PD,AD,CD的中点,∴MN∥PA,又MN⊄平面ACP,∴MN∥平面ACP,同理ME∥平面ACP,又∵MN∩ME=M,∴平面MNE∥平面ACP.(2)解∵PA是四棱锥P-ABCD的高,由MN∥PA知MN是三棱锥M-ABC的高,且MN=12PA=1,∴VA-MBC=VM-ABC=13S△ABC·MN=13×12×2×2×1=23.3.解(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.9,又BE∩BG=B,所以平面BEG∥平面ACH.4.(1)证明如图1,取BC中点为N,连接MN,C1N,∵M是AB中点,∴MN∥AC∥A1C1,∴M,N,C1,A1共面.∵BE=3EC,∴E是NC的中点.又D是CC1的中点,∴DE∥NC1.∵DE⊄平面MNC1A1,NC1⊂平面MNC1A1,∴DE∥平面A1MC1.(2)解如图2,当AA1=1时,则AM=1,A1M=2,A1C1=2.∴三棱锥A-MA1C1的体积VA-A1MC1=VC1-A1AM=13×12AM·AA1·A1C1=26.图1图25.(1)证法一取BE的中点O,连接OA,OM,∵O,M分别为线段BE,CE的中点,∴OM=12BC.又AD=12BC,∴OM=AD,又AD∥CB,OM∥CB,∴OM∥AD.∴四边形OMDA为平行四边形,∴DM∥AO,又AO⊂平面ABE,MD⊄平面ABE,∴DM∥平面ABE.证法二取BC的中点N,连接DN,MN(图略),∵M,N分别为线段CE,BC的中点,∴MN∥BE,又BE⊂平面ABE,MN⊄平面ABE,∴MN∥平面ABE,同理可证DN∥平面ABE,MN∩DN=N,∴平面DMN∥平面ABE,又DM⊂平面DMN,∴DM∥平面ABE.(2)解法一∵平面ABE⊥平面ABCD,AB⊥BC,BC⊂平面ABCD,∴BC⊥平面ABE,∵OA⊂平面ABE,∴BC⊥AO,又BE⊥AO,BC∩BE=B,∴AO⊥平面BCE,由(1)知DM=AO=3,DM∥AO,∴DM⊥平面BCE,9,∴VM-BDE=VD-MBE=13×12×2×2×3=233.解法二取AB的中点G,连接EG,∵△ABE是等边三角形,∴EG⊥AB,∵平面ABE∩平面ABCD=AB,平面ABE⊥平面ABCD,且EG⊂平面ABE,∴EG⊥平面ABCD,即EG为四棱锥E-ABCD的高,∵M是EC的中点,∴M-BCD的体积是E-BCD体积的一半,∴VM-BDE=VE-BDC-VM-BDC=12VE-BDC,∴VM-BDE=12×13×12×2×4×3=233.即三棱锥M-BDE的体积为233.6.解方法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.因为B1E=3EC1,所以EG=34A1C1.又因为AF∥A1C1,且AF=34A1C1,所以AF
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)