首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
2022版高考数学二轮复习第3篇第1讲函数与方程思想课件
2022版高考数学二轮复习第3篇第1讲函数与方程思想课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/35
2
/35
3
/35
4
/35
剩余31页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第三篇思想篇\n第一讲 函数与方程思想\n思想方法诠释思想方法应用\n思想方法诠释\n函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决.方程思想的实质就是将所求的量设成未知数,根据题中的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决.函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的.函数思想重在对问题进行动态的研究,方程思想则是动中求解,研究运动中的等量关系.\n思想方法应用\n应用一 点的坐标代入函数(方程)法典例1D\n\n\n1.点坐标代入函数(方程)法是指把点“放到”函数图象中去“入套”,通过构造方程求解参数的方法.此方法适用于已知函数或函数图象,给出满足条件的点坐标,求其中的参数问题.破解此类题的关键点:①点代入函数,把所给点坐标代入已知函数的解析式中,得到关于参数的方程或不等式.\n②解含参方程,求解关于参数的方程或不等式.③检验得结论,得出参数的值或取值范围,最后代入方程或不等式进行检验.2.应用此方法的易错点是忘记检验,在解出方程后,一定要回头望,把所求的解代入原函数中检验是否有意义.\n应用二 平面向量的函数(方程)法典例2D\n\n(2)已知a,b,c为平面上的三个向量,又a,b是两个相互垂直的单位向量,向量c满足|c|=3,c·a=2,c·b=1,则对于任意实数x,y,|c-xa-yb|的最小值为______.2\n1.平面向量问题的函数(方程)法是把平面向量问题,通过模、数量积等转化为关于相应参数的函数(方程)问题,从而利用相关知识结合函数或方程思想来处理有关参数值问题.破解此类题的关键点:①向量代数化,利用平面向量中的模、数量积等结合向量的位置关系、数量积公式等进行代数化,得到含有参数的函数(方程);②代数函数(方程)化,利用函数(方程)思想,结合相应的函数(方程)的性质求解问题;③得出结论,根据条件建立相应的关系式,并得到对应的结论.\n2.平面向量中含函数(方程)的相关知识,对平面向量的模进行平方处理,把模问题转化为数量积问题,再利用函数与方程思想来分析与处理,这是解决此类问题一种比较常见的思维方式.\n应用三 函数与方程思想在不等式中的应用典例3B\n\n(2)(2020·运城三模)若对任意x∈(0,+∞),xex-2lnx>2x+a恒成立,则a的取值范围是()A.(-∞,-2ln2)B.(-∞,ln2)C.(-∞,2-2ln2)D.(-∞,2+2ln2)C【解析】(2)xex-2lnx>2x+a恒成立,∴a<xex-2lnx-2x,设f(x)=xex-2lnx-2x,对任意x∈(0,+∞),设t=lnx+x,则t∈R,且f(x)=et-2t,设g(t)=et-2t,则g′(t)=et-2,\n令g′(t)=0,解得t=ln2,当t<ln2时,g′(t)<0,当t>ln2,g′(t)>0,∴g(t)在(-∞,ln2)上是减函数,在(ln2,+∞)上是增函数,∴g(t)≥g(ln2)=2-2ln2,∴g(t)的最小值为2-2ln2,即f(x)的最小值为2-2ln2,∴a<2-2ln2,故选C.玉\n函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题、常涉及不等式恒成立问题、比较大小问题.一般利用函数思想构造新函数,建立函数关系求解.\n应用四 函数与方程思想在数列中的应用C典例4\n\nC\n\n数列的通项与前n项和都是以正整数为自变量的函数,可用函数与方程思想处理数列问题.涉及特殊数列(等差、等比数列),已知Sn与an关系问题,应用方程思想列方程(组)求解;涉及最值问题或参数范围问题,应用函数思想来解决.\n应用五 函数与方程思想在解析几何中的应用B典例5\n\n\nB\n\n\n\n\n解析几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;求变量的取值范围和最值问题常转化为求函数的值域、最值,用函数的思想分析解答.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022版高考数学二轮复习第2篇专题6函数与导数第2讲基本初等函数函数与方程课件
高考数学二轮复习 第21讲函数与方程和数形结合思想课件
江苏专用2022高考数学二轮复习专题一第1讲函数函数与方程及函数的应用提升训练理
全国通用2022高考数学二轮复习专题七第1讲函数与方程思想数形结合思想训练文
全国通用2022高考数学二轮复习专题七第1讲函数与方程思想数形结合思想
全国通用2022高考数学二轮复习专题一第1讲函数图象与性质及函数与方程训练文
全国通用2022高考数学二轮复习专题一第1讲函数图象与性质及函数与方程
【高考复习方案】(新课标)2022届高三数学二轮限时训练 第19讲 函数与方程思想、数形结合思想
【最高考】2022届高考数学二轮专题突破高效精练 第19讲 函数与方程思想
【最高考】2022届高考数学二轮专题突破课堂讲义 第19讲 函数与方程思想
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-06-23 10:00:03
页数:35
价格:¥3
大小:1.55 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划