首页

江苏专用2022高考数学二轮复习专题一第1讲函数函数与方程及函数的应用提升训练理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第1讲 函数、函数与方程及函数的应用一、填空题1.(2022·宿迁调研模拟)函数f(x)=lnx+的定义域为________.解析 要使函数f(x)=lnx+有意义,则解得0<x≤1,即函数定义域是(0,1].答案 (0,1]2.(2022·苏北四市调研)已知函数y=log2(ax-1)在(1,2)上单调递增,则a的取值范围为________.解析 根据复合函数的单调性及对数函数的定义域求解.因为y=log2(ax-1)在(1,2)上单调递增,所以u=ax-1在(1,2)单调递增,且恒大于0,即⇒a≥1.答案 [1,+∞)3.(2022·苏、锡、常、镇模拟)若a=log3π,b=log76,c=log20.8,则a,b,c由小到大的顺序为________.解析 因为a=log3π>1,0<b=log76<1,c=log20.8<0,故c<b<a.答案 c<b<a4.已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是________.解析 由f(x)=g(x),∴|x-2|+1=kx,即|x-2|=kx-1,所以原题等价于函数y=|x-2|与y=kx-1的图象有2个不同交点.如图:∴y=kx-1在直线y=x-1与y=x-1之间,∴<k<1.6\n答案 5.(2022·江苏卷)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.解析 首先讨论1-a,1+a与1的关系,当a<0时,1-a>1,1+a<1,所以f(1-a)=-(1-a)-2a=-1-a;f(1+a)=2(1+a)+a=3a+2.因为f(1-a)=f(1+a),所以-1-a=3a+2,所以a=-.当a>0时,1-a<1,1+a>1,所以f(1-a)=2(1-a)+a=2-a;f(1+a)=-(1+a)-2a=-3a-1.因为f(1-a)=f(1+a),所以2-a=-3a-1,所以a=-(舍去).综上,满足条件的a=-.答案 -6.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.解析 f′(x)=3x2+1>0,∴f(x)在R上为增函数.又f(x)为奇函数,由f(mx-2)+f(x)<0知,f(mx-2)<f(-x).∴mx-2<-x,即mx+x-2<0,令g(m)=mx+x-2,由m∈[-2,2]知g(m)<0恒成立,可得∴-2<x<.答案 7.(2022·南师附中模拟)若函数f(x)=有两个不同的零点,则实数a的取值范围是________.解析 当x>0时,由f(x)=lnx=0,得x=1.因为函数f(x)有两个不同的零点,则当x≤0时,函数f(x)=2x-a有一个零点,令f(x)=0得a=2x,因为0<2x≤20=1,所以0<a≤1,所以实数a的取值范围是0<a≤1.6\n答案 (0,1]8.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有<0,给出下列命题:①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[-4,4]上有四个零点;④f(2014)=0.其中所有正确命题的序号为________.解析 令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因为函数f(x)为偶函数,所以f(2)=0,①正确;因为f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x1≠x2时,都有<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2014)=0,④正确.答案 ①②④二、解答题9.已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).(1)若g(x)=m有实根,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.解 (1)∵x>0,∴g(x)=x+≥2=2e,等号成立的条件是x=e.故g(x)的值域是[2e,+∞),因而只需m≥2e,则g(x)=m就有实根.故m∈[2e,+∞).6\n(2)若g(x)-f(x)=0有两个相异的实根,即g(x)=f(x)中函数g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象.∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2.其对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).10.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为hcm,底面边长为acm.由已知得a=x,h==(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1800,所以当x=15时,S取得最大值.(2)V=a2h=2(-x3+30x2),V′=6x(20-x).由V′=0,得x=0(舍)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0.所以当x=20时,V取得极大值,也是最大值.此时=.即包装盒的高与底面边长的比值为.11.如图,现要在边长为100m的正方形ABCD6\n内建一个交通“环岛”.以正方形的四个顶点为圆心在四个角分别建半径为xm(x不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为x2m的圆形草地.为了保证道路畅通,岛口宽不小于60m,绕岛行驶的路宽均不小于10m.(1)求x的取值范围;(运算中取1.4)(2)若中间草地的造价为a元/m2,四个花坛的造价为ax元/m2,其余区域的造价为元/m2,当x取何值时,可使“环岛”的整体造价最低?解 (1)由题意得解得即9≤x≤15.所以x的取值范围是[9,15].(2)记“环岛”的整体造价为y元,则由题意得y=a×π×+ax×πx2+×=,令f(x)=-x4+x3-12x2,则f′(x)=-x3+4x2-24x=-4x.由f′(x)=0解得x=0(舍去)或x=10或x=15,列表如下:x9(9,10)10(10,15)15f′(x)-0+06\nf(x)↘极小值↗所以当x=10时,y取最小值.故当x=10时,可使“环岛”的整体造价最低.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:25:04 页数:6
价格:¥3 大小:107.88 KB
文章作者:U-336598

推荐特供

MORE

江苏专用2022高考数学二轮复习专题一第1讲函数函数与方程及函数的应用提升训练理

文档下载