首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
中考数学二轮复习专题二解答重难点题型突破题型一简单几何图形的证明与计算试题
中考数学二轮复习专题二解答重难点题型突破题型一简单几何图形的证明与计算试题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/9
2
/9
剩余7页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题二 解答重难点题型突破题型一 简单几何图形的证明与计算类型一 特殊四边形的探究1.(2017·开封模拟)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线;(2)若BC=2,E是半圆上一动点,连接AE、AD、DE.填空:①当的长度是__________时,四边形ABDE是菱形;②当的长度是__________时,△ADE是直角三角形.2.(2017·商丘模拟)如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.(1)直接写出ED和EC的数量关系:;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;(3)填空:当BC=__________时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是__________.9 3.如图,在菱形ABCD中,∠ABC=60°,BC=5cm,点E从点A出发沿射线AD以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过BD边的中点G时,求证:△DGE≌△BGF;(2)填空:①当t为__________s时,△ACE的面积是△FCE的面积的2倍;②当t为__________s时,四边形ACFE是菱形.4.(2017·新乡模拟)如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:AE=CF;(2)连接AF,CE.①当EF和AC满足条件__________时,四边形AFCE是菱形;②若AB=1,BC=2,∠B=60°,则四边形AFCE为矩形时,EF的长是__________.类型二 几何问题的证明与计算1.(2017·周口模拟)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.9 2.(2017·湘潭)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.9 3.(2017·山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.4.(2017·杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.9 题型一 简单几何图形的证明与计算类型一 特殊四边形的探究1.(1)证明:连接OD,如解图,∵∠BAC=90°,点D为BC的中点,∴DB=DA=DC,∵∠B=60°,∴△ABD为等边三角形,∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,而OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=60°+30°=90°,∴OD⊥BC,又∵OD是⊙O的半径,∴BD是⊙O的切线;(2)解:①连接OD、OE,∵△ABD为等边三角形,∴AB=BD=AD=CD=,在Rt△ODC中,OD=CD=1,当DE∥AB时,DE⊥AC,∴AD=AE,∵∠ADE=∠BAD=60°,∴△ADE为等边三角形,∴AD=AE=DE,∠ADE=60°,∴∠AOE=2∠ADE=120°,∴AB=BD=DE=AE,∴四边形ABDE为菱形,此时,的长度==π,②当∠ADE=90°时,AE为直径,点E与点F重合,此时的长度==π,当∠DAE=90°时,DE为直径,∠AOE=2∠ADE=60°,此时的长度==π,所以当的长度为π或π时,△ADE是直角三角形.2.解:(1)连接CD,如解图,∵AC是⊙O的直径,∴∠ADC=90°,∵E是BC的中点,∴DE=CE;(2)DE是⊙O的切线.理由如下:9 连接OD,如解图,∵BC为切线,∴OC⊥BC,∴∠OCB=90°,即∠2+∠4=90°,∵OC=OD,ED=EC,∴∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)当BC=2时,∵CA=CB=2,∴△ACB为等腰直角三角形,∴∠B=45°,∴△BCD为等腰直角三角形,∴DE⊥BC,DE=BC=1,∵OA=DE=1,AO∥DE,∴四边形AOED是平行四边形;∵OD=OC=CE=DE=1,∠OCE=90°,∴四边形OCED为正方形.3.(1)证明:∵G为BD的中点,∴BG=DG,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDG=∠FBG,∠GED=∠GFB,∴△DGE≌△BGF(AAS);(2)解:①分两种情况考虑:当点F在线段BC上时,如解图①,连接AC,EC,设菱形ABCD边BC上的高为h,由题意知S△ACE=AE·h,S△FCE=CF·h,∵△ACE的面积是△FCE的面积的2倍,∴AE·h=2×CF·h,∴AE=2CF,∵AE=t,CF=5-2t,∴t=2(5-2t),解得t=2;当点F在线段BC的延长线上时,如解图②,连接AC,EC,AE=t,CF=2t-5,∵△ACE的面积是△FCE的面积的2倍,∴AE=2CF,∴t=2(2t-5),解得t=;②∵四边形ABCD为菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=5,当四边形ACFE为菱形时,则AE=AC=CF=5,即t=5.4.(1)证明:∵AD∥BC,∴∠EAO=∠FCO.∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA).∴AE=CF.(2)解:①当EF和AC满足条件EF⊥AC时,四边形AFCE是菱形;如解图所示,9 ∵AE∥CF,AE=CF,∴四边形AFCE是平行四边形,又∵EF⊥AC,∴四边形AFCE是菱形;②若四边形AFCE为矩形,则EF=AC,∠AFB=∠AFC=90°,∵AB=1,BC=2,∠B=60°,∴∠BAF=30°,∴BF=AB=,∴AF=BF=,CF=2-=,∴AC===,∴EF=.类型二 几何问题的证明与计算1.证明:(1)∵F为弦AC的中点,∴AF=CF,∴OD⊥AC,∵DE切⊙O于点D,∴OD⊥DE,∴AC∥DE;(2)∵AC∥DE,且OA=AE,∴F为OD的中点,即OF=FD,又∵AF=CF,∠AFO=∠CFD,∴△AFO≌△CFD(SAS),∴S△AFO=S△CFD,∴S四边形ACDE=S△ODE.在Rt△ODE中,OD=OA=AE=2,∴OE=4,∴DE===2,∴S四边形ACDE=S△ODE=·OD·DE=×2×2=2.2.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,,9 ∴△ADE≌△FCE(ASA);(2)解:∵△ADE≌△FCE,∴AD=FC,∵AD=BC,AB=2BC,∴AB=FB,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.3.解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴=,即=,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如解图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.4.解:(1)结论:AG2=GE2+GF2.理由:如解图,连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2;(2)如解图,作AH⊥BG于点H,由题意得∠AGB=60°,∠ABH=45°,∴△ABH是等腰直角三角形,9 ∵AB=1,∴AH=BH=,HG=,∴BG=.9
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
中考数学二轮复习专题二解答重难点题型突破题型二解直角三角形的实际应用试题
中考数学二轮复习专题二解答重难点题型突破题型六二次函数与几何图形综合题课件
中考数学二轮复习专题二解答重难点题型突破题型六二次函数与几何图形综合题试题
中考数学二轮复习专题二解答重难点题型突破题型三反比例函数与一次函数综合题试题
中考数学二轮复习专题二解答重难点题型突破题型四函数与方程的实际应用课件
中考数学二轮复习专题二解答重难点题型突破题型四函数与方程的实际应用试题
中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题课件
中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题
中考数学二轮复习专题二解答重难点题型突破题型一简单几何图形的探究与计算课件
云南省2022中考数学试题研究三解答题重难点突破题型三与切线有关的证明与计算
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-02-20 09:00:26
页数:9
价格:¥5
大小:131.50 KB
文章作者:追求真实
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划