首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
人教版(2024)
>
七年级上册
>
第四章 整式的加减
>
人教版七年级数学上册 第四章 整式的加减压轴训练(单元复习 7类压轴)
人教版七年级数学上册 第四章 整式的加减压轴训练(单元复习 7类压轴)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/27
2
/27
剩余25页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第四章整式的加减压轴训练01压轴总结目录压轴题型一 单项式的规律题1压轴题型二 多项式系数、指数中字母求值2压轴题型三 已知同类项求指数中字母的值4压轴题型四 已知同类项求指数中代数式的值5压轴题型五 整式加减中的无关型问题7压轴题型六 整式加减中的新定义型问题11压轴题型七 整式加减的应用1502压轴题型压轴题型一 单项式的规律题例题:(23-24八年级下·青海西宁·开学考试)按一定规律排列的单项式:,第2024个单项式是.巩固训练1.(23-24七年级上·山东滨州·期末)观察下列单项式:x,,,,,…考虑它们的系数和次数.请写出第8个:.2.(23-24七年级上·辽宁铁岭·期末)按一定规律排列的数依次为:,,,,…,其中,按此规律排列下去,第10个数是.3.(23-24七年级上·浙江台州·期中)一组按规律排列的式子:,,,,…根据你发现的规律:写出第6个式子是,第个式子是.(为正整数)压轴题型二 多项式系数、指数中字母求值例题:(23-24六年级下·黑龙江哈尔滨·期中)多项式是关于的三次四项式,且二次项系数是−2,求.巩固训练27 1.(23-24七年级上·吉林·阶段练习)若多项式是关于x的五次三项式,则m的值为.2.(23-24七年级上·河南安阳·期中)已知多项式是三次三项式,则.3.(23-24七年级上·安徽合肥·阶段练习)若多项式是关于的五次三项式,则.压轴题型三 已知同类项求指数中字母的值例题:(23-24七年级下·山东德州·开学考试)如果与是同类项,则,.巩固训练1.(23-24七年级下·河南洛阳·开学考试)单项式与是同类项,则.2.(23-24七年级下·甘肃兰州·开学考试)单项式与是同类项,则,.3.(23-24六年级上·山东青岛·期末)已知与是同类项,则,.压轴题型四 已知同类项求指数中代数式的值例题:(22-23七年级上·山东青岛·期末)若与的和还是一个单项式,则的值是.巩固训练1.(22-23六年级下·黑龙江哈尔滨·期中)若与是同类项,则.2.(22-23七年级上·内蒙古包头·期末)若与的和仍是单项式,则的值等于.3.(23-24七年级下·重庆万州·期末)若单项式与是同类项,则.压轴题型五 整式加减中的无关型问题例题:(23-24七年级下·四川自贡·开学考试)已知多项式,.27 (1)求的值;(2)若的值与y的取值无关,求x的值.巩固训练1.(23-24七年级下·山东日照·开学考试)已知,小明在计算时,误将其按计算,结果得到.(1)求的正确结果;(2)若的值与无关,求的值.2.(23-24七年级上·四川眉山·期中)已知,(1)若,求的值(2)若的值与a的取值无关,求b的值.3.(23-24七年级上·陕西咸阳·阶段练习)已知:,.(1)计算:;(2)若的值与的取值无关,求的值;(3)如果,那么的表达式是什么?4.(23-24六年级下·山东烟台·期末)【问题呈现】(1)已知代数式的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形内,未被覆盖的两部分的面积分别记为,,当AB的长度变化时,的值始终不变,求a与b的数量关系.27 压轴题型六 整式加减中的新定义型问题例题:(23-24七年级上·江苏无锡·阶段练习)定义:若,则称与是关于的相关数.(1)若与是关于的相关数,则______.(2)若与是关于的相关数,,的值与无关,求的值.巩固训练1.(23-24七年级上·吉林长春·阶段练习)定义:若,则称a与b是关于数n的平均数.比如3与是关于的平均数,7与13是关于10的平均数.(1)填空:2与_______是关于的平均数,______与是关于2的平均数;(2)现有与(k为常数),且a与b始终是关于数n的平均数,与x的取值无关,求n的值.2.(23-24八年级上·山西吕梁·期末)阅读理解题我们定义:如果两个多项式与的差为常数,且这个常数为正数,则称是的“雅常式”,这个常数称为关于的“雅常值”,如多项式,,,则是的“雅常式”,关于的“雅常值”为9(1)已知多项式,,则关于的“雅常值”是______;(2)多项式是多项式的“雅常式”且“雅常值”是3,已知多项式,求多项式(3)已知多项式(为常数),,是的“雅常式”,求关于的“雅常值”27 3.(23-24七年级上·江苏·周测)定义一种新运算“”:,比如:.(1)_____________;_____________;(2)当时,是否成立?若成立,请说明理由;若不成立,请给出一组的具体值加以说明;(3)若,比较与的大小.压轴题型七 整式加减的应用例题:(23-24七年级上·辽宁沈阳·阶段练习)小亮房间窗户的窗帘如图(1)所示,它是由两个四分之一圆组成(半径相同).(1)如图(1),请用代数式表示窗帘的面积:________;用代数式表示窗户能射进阳光的面积:__________;(结果保留π)(2)小亮又设计了如图(2)的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你用代数式表示窗户能射进阳光的面积:________;(结果保留π)(3)当米,米时,图(2)中窗户能射进阳光的面积与图(1)中窗户能射进阳光的面积的差为________(π取3)巩固训练27 1.(23-24七年级上·河南驻马店·期末)如图,学校要利用专款建一长方形的电动车停车场,其他三面用护栏围起,其中长方形停车场的长为米,宽比长少米.(1)用表示长方形停车场的宽;(2)求护栏的总长度;(3)若,每米护栏造价100元,求建此停车场所需的费用.2.(23-24七年级上·四川泸州·阶段练习)如图,长为,宽为的大长方形被分割成7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形.其较短一边长为.(1)从图可知,这5块完全相同的小长方形较长边的长是(用含的代数式表示)(2)分别计算阴影A,B的周长(用含,的代数式表示)(3)当,时,分别计算阴影A,B的面积.3.(23-24七年级上·湖北宜昌·期中)甲、乙两商场分别出售A型、B型两种电暖气,零售价及运费如下表所示:27 商场A型电暖气B型电暖气运费A电暖气B电暖气甲200元/台300元/台10元/台10元/台乙220元/台290元/台免运费12元/台某公司计划在甲商场或乙商场选择一家采购两种电暖气共100台,其中A型电暖气需要买x台.(1)请用含x的代数式分别表示在两家商场购买电暖气所需要的总费用(总费用=购买价+运费);(2)若需购买A型电暖气40台,在哪个商场购买划算?若可以同时在两家商场自由选择,还有更优惠的方案吗?请你设计一种方案.27 第四章整式的加减压轴训练01压轴总结目录压轴题型一 单项式的规律题1压轴题型二 多项式系数、指数中字母求值2压轴题型三 已知同类项求指数中字母的值4压轴题型四 已知同类项求指数中代数式的值5压轴题型五 整式加减中的无关型问题7压轴题型六 整式加减中的新定义型问题11压轴题型七 整式加减的应用1502压轴题型压轴题型一 单项式的规律题例题:(23-24八年级下·青海西宁·开学考试)按一定规律排列的单项式:,第2024个单项式是.【答案】【分析】本题考查了与单项式有关的规律探索,观察指数规律与符号规律,进行解答便可.【详解】解:∵,∴系数的规律为,指数的规律为n,∴第n个单项式为:,当时,单项式为,故答案为:.巩固训练1.(23-24七年级上·山东滨州·期末)观察下列单项式:x,,,,,…考虑它们的系数和次数.请写出第8个:.【答案】27 【分析】本题考查数字的变化类,根据题目中的单项式可以发现数字因数和字母的指数的变化特点,即可写出第n个单项式,即可得出结果.【详解】解:∵一列单项式:x,,,,,…∴第n个单项式为:,当时,这个单项式是,故答案为:.2.(23-24七年级上·辽宁铁岭·期末)按一定规律排列的数依次为:,,,,…,其中,按此规律排列下去,第10个数是.【答案】【分析】本题考查单项式中的规律探究,根据已有单项式,得到第个单项式为:,进而求出第10个数即可.【详解】解:观察可得:第个单项式为:,∴第10个数是;故答案为:.3.(23-24七年级上·浙江台州·期中)一组按规律排列的式子:,,,,…根据你发现的规律:写出第6个式子是,第个式子是.(为正整数)【答案】【分析】本题考查单项式规律的探究.观察可得:每一个式子都是分数形式,其中第奇数个式子为负,第偶数个式子为正;分母为,分子为,由此即可得出答案.【详解】解:∵,,,、……,第n个式子是,∴第6个式子是,故答案为:;.压轴题型二 多项式系数、指数中字母求值27 例题:(23-24六年级下·黑龙江哈尔滨·期中)多项式是关于的三次四项式,且二次项系数是−2,求.【答案】【分析】本题考查多项式的知识,解题的关键是掌握多项式的定义,根据题意,则,求出,,即可.【详解】∵是关于的三次四项式,二次项系数是−2,∴,∴,∴.故答案为:.巩固训练1.(23-24七年级上·吉林·阶段练习)若多项式是关于x的五次三项式,则m的值为.【答案】【分析】本题主要考查了多项式项和次数的定义,几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数,据此可得,解之即可得到答案.【详解】解:∵多项式是关于x的五次三项式,∴,∴,故答案为:。2.(23-24七年级上·河南安阳·期中)已知多项式是三次三项式,则.【答案】27 【分析】本题主要考查多项式的次数和项数的定义,根据定义得出,,即可求得答案。【详解】解:∵多项式是三次三项式,∴,,解得:,则.故答案为:.3.(23-24七年级上·安徽合肥·阶段练习)若多项式是关于的五次三项式,则.【答案】【分析】本题主要考查多项式的次数与项数问题,熟练掌握多项式的次数与项数是解题的关键;因此此题可根据多项式的相关概念进行求解.【详解】解:由多项式是关于的五次三项式,可知:,∴,∴;故答案为.压轴题型三 已知同类项求指数中字母的值例题:(23-24七年级下·山东德州·开学考试)如果与是同类项,则,.【答案】【分析】本题考查了同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,根据同类项的定义求解即可.【详解】解:∵与是同类项,∴,,∴,故答案为:,.巩固训练1.(23-24七年级下·河南洛阳·开学考试)单项式与是同类项,则.27 【答案】【分析】本题考查了同类项的定义,掌握两个相同是解题关键.根据同类项定义:“含有相同的字母,并且相同字母的指数也相同的两个单项式是同类项”进行求解即可.【详解】解:∵与是同类项,∴,解得:.故答案为:.2.(23-24七年级下·甘肃兰州·开学考试)单项式与是同类项,则,.【答案】或【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同由同类项的定义,先求出、的值,然后求出答案即可.【详解】解:∵单项式与是同类项,∴,,∴或,;故答案为:或.3.(23-24六年级上·山东青岛·期末)已知与是同类项,则,.【答案】42【分析】本题考查了同类项的定义,所含字母相同,并且相同字母的指数也相同的项,叫做同类项;根据同类项的定义即可作答.【详解】∵与是同类项,∴∴故答案为:4,2.压轴题型四 已知同类项求指数中代数式的值例题:(22-23七年级上·山东青岛·期末)若与的和还是一个单项式,则的值是.27 【答案】2【分析】本题考查了同类项、求代数式的值,根据单项式与的和是单项式得出两个单项式是同类项,由此即可得出m,n的值,代入进行计算即可.【详解】解:∵与的和还是一个单项式,∴和是同类项,∴,,∴,∴,故答案为:2.巩固训练1.(22-23六年级下·黑龙江哈尔滨·期中)若与是同类项,则.【答案】【分析】本题考查同类项的概念,有理数的乘方运算,正确的计算是解题的关键.根据同类项的概念:相同字母的指数相同,即可求出,在代入求解即可.【详解】解:∵若与是同类项,∴,∴,故答案为:.2.(22-23七年级上·内蒙古包头·期末)若与的和仍是单项式,则的值等于.【答案】【分析】本题考查合并同类项,根据题意,得到两个单项式为同类项,根据同类项的定义,求出的值,进而求出代数式的值即可.【详解】解:由题意,得:与为同类项,∴,∴,27 ∴;故答案为:.3.(23-24七年级下·重庆万州·期末)若单项式与是同类项,则.【答案】29【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.根据同类项的概念求解.【详解】解:∵单项式与是同类项,,,∴,,则.故答案为:.压轴题型五 整式加减中的无关型问题例题:(23-24七年级下·四川自贡·开学考试)已知多项式,.(1)求的值;(2)若的值与y的取值无关,求x的值.【答案】(1)(2)【分析】本题主要考查了整式加减运算与无关型问题,解题的关键是熟练掌握整式加减运算法则,准确计算.(1)将,代入,按照整式加减运算法则计算即可;(2)根据的值与y的取值无关时,y的系数为0,即可求出x的值.【详解】(1)解:∵,∴27 (2)解:由(1)得当,即时,的值与y的取值无关,巩固训练1.(23-24七年级下·山东日照·开学考试)已知,小明在计算时,误将其按计算,结果得到.(1)求的正确结果;(2)若的值与无关,求的值.【答案】(1)(2)【分析】本题考查了整式的加减运算、及整式加减运算中的无关型问题:(1)由题意得,确定得值,利用整式的加减运算法则即可求解;(2)的值与x无关,即x的系数为0,进而可得,再代入即可求解;熟练掌握整式的加减运算法则是解题的关键.【详解】(1)解:由题意得:,.则.(2)由题意得:,的值与x无关,,解得:,27 .2.(23-24七年级上·四川眉山·期中)已知,(1)若,求的值(2)若的值与a的取值无关,求b的值.【答案】(1)(2)【分析】本题考查了整式的加减运算,熟知运算法则是解本题的关键.(1)根据整式的加减运算法则计算即可;(2)根据整式的加减运算法则计算出的值,然后根据的值与a的取值无关,即可得出答案.【详解】(1)∵∴原式;(2)∵的值与a的取值无关,∴∴.3.(23-24七年级上·陕西咸阳·阶段练习)已知:,.(1)计算:;(2)若的值与的取值无关,求的值;27 (3)如果,那么的表达式是什么?【答案】(1)(2)的值为(3)【分析】本题考查整式的加减,熟练掌握运算法则是解答本题的关键.(1)合并同类项可得的最简结果;(2)若的值与y的取值无关,则,即可得出答案;(3)利用整式的加减先计算出即可得出结果.【详解】(1)解:;(2)解:.当的值与的取值无关时,,解得,所以的值为;(3)解:由题意,得,,,.4.(23-24六年级下·山东烟台·期末)【问题呈现】(1)已知代数式的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形内,未被覆盖的两部分的面积分别记为,,当AB的长度变化时,的值始终不变,求a与b的数量关系.27 【答案】(1)3;(2)【分析】本题主要考查了整式的混合运算及列代数式,读懂题意列出代数式是解决本题的关键.(1)根据题意,代数式,可化为,因为代数式的值与x无关,可得,即可得出答案;(2)设,算出阴影的面积分别为,即可得出面积的差为,因为S的取值与n无关,即.【详解】解:(1)原式.由题意得,含x项的系数为0,即.所以.(2)设,则,,所以,由题意得,含n项的系数为0,即.压轴题型六 整式加减中的新定义型问题例题:(23-24七年级上·江苏无锡·阶段练习)定义:若,则称与是关于的相关数.(1)若与是关于的相关数,则______.(2)若与是关于的相关数,,的值与无关,求的值.【答案】(1)3(2)8【分析】(1)根据相关数的定义得到,从而得到a的值;(2)根据相关数的定义得到,从而,根据B的值与m无关得到,求出n的值,从而得到B的值.27 本题考查了合并同类项,新定义问题,掌握与m无关就合并同类项后让m前面的系数等于0是解题的关键.【详解】(1)解:∵,∴,故答案为:3;(2)解:∵,∴∴∵B的值与m无关,∴,∴,∴.答:B的值为8.巩固训练1.(23-24七年级上·吉林长春·阶段练习)定义:若,则称a与b是关于数n的平均数.比如3与是关于的平均数,7与13是关于10的平均数.(1)填空:2与_______是关于的平均数,______与是关于2的平均数;(2)现有与(k为常数),且a与b始终是关于数n的平均数,与x的取值无关,求n的值.【答案】(1);(2)【分析】本题主要考查了整式的加减计算,整式加减中的无关型问题:(1)根据所给的定义列式计算即可;(2)先根据整式的加减计算法则求出,再根据a与b始终是关于数n的平均数,与x的取值无关,得到,则,再由,即可求出答案.【详解】(1)解:设2与m是关于的平均数,∴,27 ∴;设n与是关于2的平均数,∴,∴;故答案为:;;(2)解:∵与,∴,∵a与b始终是关于数n的平均数,与x的取值无关,∴,∴,∴,∴.2.(23-24八年级上·山西吕梁·期末)阅读理解题我们定义:如果两个多项式与的差为常数,且这个常数为正数,则称是的“雅常式”,这个常数称为关于的“雅常值”,如多项式,,,则是的“雅常式”,关于的“雅常值”为9(1)已知多项式,,则关于的“雅常值”是______;(2)多项式是多项式的“雅常式”且“雅常值”是3,已知多项式,求多项式(3)已知多项式(为常数),,是的“雅常式”,求关于的“雅常值”【答案】(1)1(2)(3)4【分析】本题考查了整式的加减运算,注意计算的准确性即可.(1)计算即可求解;27 (2)由题意得,据此即可求解;(3)计算,令含未知数的项的系数为零即可求解.【详解】(1)解:∵,,∴,∴关于的“雅常值”是1故答案为:(2)解:多项式是的“雅常式”且“雅常值”是3,,.(3)解:.是的雅常式,,,,关于的“雅常值”是4.3.(23-24七年级上·江苏·周测)定义一种新运算“”:,比如:.(1)_____________;_____________;(2)当时,是否成立?若成立,请说明理由;若不成立,请给出一组的具体值加以说明;(3)若,比较与的大小.【答案】(1)16,(2)不成立,说明见解析(3)见解析27 【分析】本题考查了新定义运算,有理数的混合运算,整式的加减,解题的关键是:(1)直接根据新定义,代入计算即可;(2),假设分别代入计算即可发现结论;;(3)化简和,再计算,根据结果分类讨论即可.【详解】(1)解:;;(2),假设则:;;故不成立;(3);;当时,;当时,;当时,.27 压轴题型七 整式加减的应用例题:(23-24七年级上·辽宁沈阳·阶段练习)小亮房间窗户的窗帘如图(1)所示,它是由两个四分之一圆组成(半径相同).(1)如图(1),请用代数式表示窗帘的面积:________;用代数式表示窗户能射进阳光的面积:__________;(结果保留π)(2)小亮又设计了如图(2)的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你用代数式表示窗户能射进阳光的面积:________;(结果保留π)(3)当米,米时,图(2)中窗户能射进阳光的面积与图(1)中窗户能射进阳光的面积的差为________(π取3)【答案】(1);(2)(3)【分析】本题考查列代数式和整式加减的应用,解题的关键是用代数式表示出装饰物的面积.(1)将两个四分之一的圆面积相加即是装饰物的面积,用矩形的面积减去装饰物的面积即是射进阳光的面积;(2)用矩形面积减去一个半圆和两个四分之一圆的面积即为射进阳光的面积;(3)将(2)(1)的结论作差,再将米,米代入,即可求解.【详解】(1)解:由题意知:四分之一圆的半径为,∴装饰物的面积为:,27 ∴窗户能射进阳光的面积为:;(2)解:由题意知:半圆和四分之一圆的半径为,∴装饰物的面积为:,∴图2窗户能射进阳光的面积为:;(3)解:,将代入,可得:原式,答:两图中窗户能射进阳光的面积相差.巩固训练1.(23-24七年级上·河南驻马店·期末)如图,学校要利用专款建一长方形的电动车停车场,其他三面用护栏围起,其中长方形停车场的长为米,宽比长少米.(1)用表示长方形停车场的宽;(2)求护栏的总长度;(3)若,每米护栏造价100元,求建此停车场所需的费用.【答案】(1)米(2)护栏的长度是米;(3)建此停车场所需的费用是23000元.【分析】本题考查了整式的加减、列代数式和代数式求值,解题时要数形结合,该护栏的长度是由三条边组成的.27 (1)长方形停车场的宽=长方形停车场的长;(2)护栏的长度=2×与围墙垂直的边长+与围墙平行的一边长;(3)把a、b的值代入(2)中的代数式进行求值即可.【详解】(1)解:依题意得长方形停车场的宽:米;(2)解:护栏的长度;答:护栏的长度是米;(3)解:由(2)知,护栏的长度是米,则依题意得:(元).答:若,每米护栏造价100元,建此停车场所需的费用是23000元.2.(23-24七年级上·四川泸州·阶段练习)如图,长为,宽为的大长方形被分割成7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形.其较短一边长为.(1)从图可知,这5块完全相同的小长方形较长边的长是(用含的代数式表示)(2)分别计算阴影A,B的周长(用含,的代数式表示)(3)当,时,分别计算阴影A,B的面积.【答案】(1)(2)阴影A的周长为;阴影B的周长为(3)阴影A的面积为:;阴影B的面积为:27 【分析】本题主要考查了列代数式,以及代数式求值,解题的关键是数形结合,熟练掌握长方形的面积公式和周长公式.(1)根据图形用已知数据和y表示出小长方形较长边的长即可;(2)根据长方形的周长公式计算阴影A,B的周长即可;(3)根据,,结合长方形面积公式分别求出阴影A,B的面积即可.【详解】(1)解:由图可知,每块小长方形较长边的长是;故答案为:;(2)解:阴影A的周长为:,阴影B的周长为,(3)解:当时,阴影A的面积为:,阴影B的面积为:答:阴影A的面积为:;阴影B的面积为:3.(23-24七年级上·湖北宜昌·期中)甲、乙两商场分别出售A型、B型两种电暖气,零售价及运费如下表所示:商场A型电暖气B型电暖气运费A电暖气B电暖气甲200元/台300元/台10元/台10元/台乙220元/台290元/台免运费12元/台某公司计划在甲商场或乙商场选择一家采购两种电暖气共100台,其中A型电暖气需要买x台.(1)请用含x的代数式分别表示在两家商场购买电暖气所需要的总费用(总费用=购买价+运费);(2)若需购买A型电暖气40台,在哪个商场购买划算?若可以同时在两家商场自由选择,还有更优惠的方案吗?请你设计一种方案.27 【答案】(1)在甲商场购买电暖气所需要的总费用为元,在乙商场购买电暖气所需要的总费用为元(2)在乙商场购买划算;更优惠的方案为:在甲商场中购买40台A型电暖气,在乙商场中购买60台B型电暖气费【分析】本题考查列代数式及其求值、整式的加减运算的应用,理解题意,正确列出代数式是解答的关键.(1)设A型电暖气需要买x台,则B型电暖气需要买台,根据总费用=购买价+运费列出对应代数式即可求解;(2)将代入(1)代数式中求解,结合表中数据,进而比较大小可作出结论.【详解】(1)解:设A型电暖气需要买x台,则B型电暖气需要买台,根据题意,在甲商场购买电暖气所需要的总费用为元;在乙商场购买电暖气所需要的总费用为元;(2)解:当时,在甲商场购买电暖气所需要的总费用为(元),在乙商场购买电暖气所需要的总费用为(元),根据表格数据,甲商场中的A型电暖气费用低,乙商场中的B型电暖气费用低,则同时在两家商场自由选择的较低费用为(元),∵,∴需购买A型电暖气40台,在乙商场购买划算,若可以同时在两家商场自由选择,还有更优惠的方案为:在甲商场中购买40台A型电暖气,在乙商场中购买60台B型电暖气费.27
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
人教版七年级数学上册教案:整式的加减复习
第四章整式的加减4.4整式的加减同步课件(冀教版七上数学)
第四章整式的加减4.4整式的加减教案(冀教版七上)
2023七年级数学上册第3章整式的加减3.4整式的加减4整式的加减课件(华东师大版)
第3章整式的加减3.4整式的加减4整式的加减教案(华东师大版七年级上册)
人教版七年级数学上册(第二章 整式的加减)2.2 整式的加减(学习、上课资料)
七年级数学上册第四章 整式的加减 单元测试卷(人教版 2024年秋)
人教版七年级数学上册第四章 整式的加减 单元测试卷(2024年秋)
人教版七年级数学上册 第三章 代数式压轴训练(5类压轴)
人教版七年级数学上册 第四章 整式的加减 单元测试卷
文档下载
收藏
所属:
初中 - 数学
发布时间:2024-11-06 22:40:01
页数:27
价格:¥3
大小:1.23 MB
文章作者:浮城3205426800
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划