首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2025年高考数学一轮复习教学课件第5章 第3课时 平面向量的数量积及其应用
2025年高考数学一轮复习教学课件第5章 第3课时 平面向量的数量积及其应用
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/30
2
/30
3
/30
4
/30
剩余26页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
必备知识·关键能力·学科素养·核心价值第五章平面向量、复数 第3课时 平面向量的数量积及其应用对应学生用书第122页 考试要求理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.会用向量的方法解决某些简单的平面几何问题. 链接教材 夯基固本第3课时 平面向量的数量积及其应用1.向量的夹角已知两个非零向量a,b,O是平面上的任意一点,作=a,=b,则∠AOB=θ就是向量a与b的夹角,向量夹角的取值范围是________.当________时,a与b垂直,记作a⊥b;当_____时,a与b共线且同向;当_____时,a与b共线且反向.2.平面向量的数量积定义:已知两个非零向量a与b,它们的夹角为θ,则数量__________叫做向量a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ.规定:0·a=__.[0,π]θ=θ=0θ=π|a||b|cosθ0 3.投影向量设a,b是两个非零向量,它们的夹角是θ,e是与b方向相同的单位向量,=a,=b,过的起点A和终点B,分别作所在直线的垂线,垂足分别为A1,B1,得到,我们称上述变换为向量a向向量b____,叫做向量a在向量b上的________,记为____________.提醒:设a,b是非零向量,它们的夹角为θ,则a在b上的投影向量为|a|cosθ=.投影投影向量|a|cosθe 4.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.5.平面向量数量积的性质及其坐标表示设非零向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cosθ=___________.(2)模:|a|==.(3)夹角:cosθ==.(4)a⊥b的充要条件:a·b=0⇔_____________.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立).x1x2+y1y2x1x2+y1y2=0 6.平面几何中的向量方法(1)用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系.[常用结论]1.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a±b)2=a2±2a·b+b2;(3)a·b=[(a+b)2-(a-b)2](该式又称作极化恒等式).2.有关向量夹角的两个结论两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线. 一、易错易混辨析(正确的打“√”,错误的打“×”)(1)两个向量的夹角的取值范围是.()(2)两个向量的数量积是一个实数.()(3)若a·b=a·c,则b=c.()(4)(a·b)c=a(b·c).()×√×× 二、教材经典衍生1.(人教A版必修第二册P36练习T1改编)已知a=(3,4),b=(5,12),则a与b夹角的余弦值为()A.B.C.D.A[|a|==5,|b|==13,a·b=3×5+4×12=63.设a与b的夹角为θ,则cosθ==.]2.(人教A版必修第二册P20练习T3改编)若a·b=-6,|a|=8,与a方向相同的单位向量为e,则向量b在向量a上的投影向量为________.-e[向量b在向量a上的投影向量为e=-e.]√-e 3.(人教A版必修第二册P23习题6.2T11改编)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.2[a·b=|a||b|cos60°=1,|a+2b|===2.]4.(人教A版必修第二册P24习题6.2T24改编)如图,在⊙C中,弦AB的长度为4,则·=________.8[取AB的中点M,连接CM(图略),则CM⊥AB,=,所以=||||·cos∠BAC=||||=||2=8.]28 典例精研 核心考点第3课时 平面向量的数量积及其应用考点一 平面向量数量积的运算[典例1](1)(2024·吉林四平模拟)已知向量a,b满足|a|=2,|b|=,且a与b的夹角为,则(a+b)·(2a-b)=()A.6B.8C.10D.14(2)已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________,的最大值为________.√11 [四字解题]读想算思正方形ABCD且E是AB边上的动点;求的最大值数量积的求解方法投影法数量积的几何意义数形结合基向量法数量积的运算三角形法则坐标法建系,求相关点的坐标,建立函数几何问题代数化,函数思想 (1)B(2)11[(1)由|a|=2,|b|=,且a与b的夹角为,所以(a+b)·(2a-b)=2a2+a·b-b2=2|a|2+|a|·|b|cos-|b|2=2×22+2×=8.故选B.(2)法一(投影法):设向量的夹角为θ,则·=·=||·||cosθ,由图可知,||cosθ=||,所以原式等于||2=1.要使·最大,只要使向量在向量上的投影向量的长度达到最大即可,因为在向量上的投影向量的长度最大为||=1,所以(·)max=||2=1. 法二(基向量法):因为=且⊥,所以=()·=||2=1,=()·==||||=||,所以要使最大,只要||最大即可,显然随着E点在AB边上移动,||max=1,故()max=1.法三(坐标法):以D为坐标原点,DC与DA所在直线分别为x,y轴,建立平面直角坐标系,如图所示,可知E(x,1),0≤x≤1,所以=(x,1),=(0,1),可得=1.因为=(1,0),所以=x,因为0≤x≤1,所以()max=1.] 【教师备选资源】(2023·陕西榆林一模)在平行四边形ABCD中,AB=2AD=4,∠BAD=60°,=2=2,则=()A.4B.C.D.3B[如图所示,在平行四边形ABCD中,∵=2=2,∴====,∴==-+,又AB=2AD=4,∠BAD=60°,∴||2=16,||2=4,=4×2×cos60°=4,∴=.故选B.]√ 名师点评计算平面向量数量积的主要方法(1)利用定义:a·b=|a||b|cos〈a,b〉.(2)利用坐标运算,若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.(3)利用基底法求数量积.(4)灵活运用平面向量数量积的几何意义. [跟进训练]1.(1)已知△ABC是边长为1的正三角形,=2=2,则·=()A.B.C.D.1(2)(2024·山东济南模拟)已知向量a=(1,2),b=(2,-2),则a·b=________,a在b上的投影向量是___________.(1)A(2)-2[(1)由=2,可知E为BC中点,所以AE⊥BC,AE=.在向量上的投影向量为,所以=||2=.(2)∵a=(1,2),b=(2,-2),∴a·b=1×2+2×(-2)=-2,∵|a|==,|b|==2,设向量a,b的夹角为θ,∴cosθ===-,则a在b上的投影向量是|a|cosθ·=(2,-2)=.]√-2 考点二 平面向量数量积的应用考向1求向量的模[典例2](2023·新高考Ⅱ卷)已知向量a,b满足|a-b|=,|a+b|=|2a-b|,则|b|=________.[由|a-b|=,得a2-2a·b+b2=3,即2a·b=a2+b2-3.由|a+b|=|2a-b|,得a2+2a·b+b2=4a2-4a·b+b2,整理得,a2-2a·b=0,所以a2-(a2+b2-3)=0,所以b2=3,所以|b|=.] 考向2向量的夹角问题[典例3](1)若e1,e2是夹角为的两个单位向量,则a=2e1+e2与b=-3e1+2e2的夹角为()A.B.C.D.(2)若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是_____________________.√ (1)C(2)[(1)由题意可得e1·e2=1×1×cos=,故a·b=(2e1+e2)·(-3e1+2e2)==-6++2=-,|a|===,|b|===,故cos〈a,b〉===-,由于〈a,b〉∈[0,π],故〈a,b〉=.(2)因为2a-3b与c的夹角为钝角,所以(2a-3b)·c<0,即(2k-3,-6)·(2,1)<0,所以4k-6-6<0,所以k<3.若2a-3b与c反向共线,则=-6,解得k=-,此时夹角不是钝角,综上所述,k的取值范围是∪.] 考向3向量的垂直问题[典例4](2023·新高考Ⅰ卷)已知向量a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),则()A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-1D[因为a=(1,1),b=(1,-1),所以a+λb=(1+λ,1-λ),a+μb=(1+μ,1-μ),由(a+λb)⊥(a+μb)可得,(a+λb)·(a+μb)=0,即(1+λ)(1+μ)+(1-λ)(1-μ)=0,整理得λμ=-1.故选D.]√ 名师点评1.求平面向量模的方法(1)若a=(x,y),利用公式|a|=.(2)利用|a|=.2.求平面向量的夹角的方法(1)定义法:cosθ=,θ的取值范围为[0,π].(2)坐标法:若a=(x1,y1),b=(x2,y2),则cosθ=.(3)解三角形法:把两向量放到同一三角形中. [跟进训练]2.(多选)(2024·烟台模拟)已知点A(1,2),B(3,1),C(4,m+1)(m∈R),则下列说法正确的是()A.||=B.若⊥,则m=-2C.若∥,则m=-D.若的夹角为锐角,则m<2且m≠-√√ AC[因为A(1,2),B(3,1),C(4,m+1)(m∈R),所以=(2,-1),=(1,m)(m∈R),选项A:||==,故A正确;选项B:因为⊥,所以·=0,所以2-m=0,即m=2,所以B错误;选项C:因为∥,所以2×m=(-1)×1,所以m=-,所以C正确;选项D:因为的夹角为锐角,且=(-2,1),所以解得m>2,所以D错误.故选AC.] 考点三 平面向量的应用[典例5](多选)在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,且|=与的夹角为θ.给出以下结论,其中正确的是()A.θ越大越费力,θ越小越省力B.θ的取值范围为[0,π]C.当θ=时,|=|G|D.当θ=时|=|G|√√ AD[对于A,由G=-(F1+F2),所以|G|2=|F1|2+|F2|2+2|F1||F2|cosθ=2|F1|2(1+cosθ),解得|F1|2=.由题意知θ∈(0,π)时,y=cosθ单调递减,所以|F1|2单调递增,即θ越大越费力,θ越小越省力,A正确;对于B,由题意知,θ的取值范围是(0,π),故B错误;对于C,当θ=时,|F1|2=,所以|F1|=|G|,故C错误;对于D,当θ=时,|F1|2=|G|2,所以|F1|=|G|,故D正确.故选AD.] 名师点评用向量方法解决平面几何(物理)问题的步骤 [跟进训练]3.长江流域内某地南北两岸平行,如图所示,已知游船在静水中的航行速度v1的大小|v1|=10km/h,水流的速度v2的大小|v2|=4km/h,设v1和v2所成的角为θ(0<θ<π),若游船要从A航行到正北方向上位于北岸的码头B处,则cosθ等于()A.-B.-C.-D.-√B[由题意知(v1+v2)·v2=0,有=0,即10×4cosθ+42=0,所以cosθ=-.] 点击页面进入…(WORD版)巩固课堂所学·激发学习思维夯实基础知识·熟悉命题方式自我检测提能·及时矫正不足本节课掌握了哪些考点?本节课还有什么疑问点?课后训练学习反思课时小结课时分层作业(三十四)平面向量的数量积及其应用 THANKS
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年新教材高考数学一轮复习第6章平面向量复数3平面向量的数量积与平面向量的应用课件(人教版)
2022年高考数学新教材一轮复习第6章平面向量复数3平面向量的数量积与平面向量的应用课件(新人教版)
2023版新高考数学一轮总复习第5章第3讲平面向量的数量积课件
【高考总动员】2023高考数学大一轮复习 第4章 第3节 平面向量的数量积与平面向量应用举例课时提升练 文 新人教版
【名师伴你行】(新课标)2023高考数学大一轮复习 第4章 第3节 平面向量的数量积与平面向量应用举例课时作业 理
2023高考数学一轮复习第5章平面向量第3节平面向量的数量积及应用举例课时跟踪检测理含解析202302331126
高考总动员2022届高考数学大一轮复习第4章第3节平面向量的数量积与平面向量应用举例课时提升练文新人教版
2024年高考数学一轮复习讲练测:平面向量与复数 第02讲 平面向量的数量积及其应用(练习)(解析版)
2025数学一轮总复习:课时分层作业34 平面向量的数量积及其应用
2025年高考数学一轮讲义第5章 第3课时 平面向量的数量积及其应用
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-10-03 06:00:02
页数:30
价格:¥1
大小:10.02 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划