首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2025年高考数学一轮讲义第9章 高考研究在线9 两种视角下探究二项分布概率的最值问题
2025年高考数学一轮讲义第9章 高考研究在线9 两种视角下探究二项分布概率的最值问题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
在人教A版选择性必修第三册P81“探究与发现”中,同学们已研究了二项分布P(X=k)=Cnkpk(1-p)n-k,k=0,1,2,…,n,随k变化时,概率值的变化特点,相应结论如文中探究问题1所示,在2023年教育部教育考试院老高考新课标适应性测试中,已对该性质做了命题;若n,k为常数,p为变量,概率Cnkpk(1-p)n-k,k=0,1,2,…,n,可视为参数p的函数,其概率值的变化特点,需要借助导数来完成,2018年全国Ⅰ卷已对此做了命题,如文中探究问题2所示. 探究问题1 探究函数f(k)=Cnkpkqn-k(k=0,1,2,…,n,p+q=1,0<p<1)的最值取得情况,其中k为自变量.令fkfk-1=n+1-kpk1-p=1+n+1p-kk1-p,k=1,2,…,n.得出结论如下:①当(n+1)p为整数时,则当k=(n+1)p时取得概率最大值,又PX=kPX=k-1=1,故此时可取的k值有2个:k=(n+1)p或(n+1)p-1;②当(n+1)p不为整数时,则当k取(n+1)p的整数部分时,P(X=k)是唯一的概率最大值.[典例1] 为了提高广大青少年的法律意识,我市开展青少年“学宪法、讲宪法”知识竞赛活动,团员小明每天自觉登录“青少年普法”软件,参加各种学习活动,同时热衷于参与四人赛.每局四人赛是由网络随机匹配四人进行比赛,每题回答正确得20分,第1个达到100分的比赛者获得第1名,赢得该局比赛,该局比赛结束.每天的四人赛共有20局,前2局是有效局,根据得分情况获得相应名次,从而得到相应的学习积分,第1局获得第1名的得3分,获得第2,3名的得2分,获得第4名的得1分;第2局获得第1名的得2分,获得第2,3,4名5/5 的得1分;后18局是无效局,无论获得什么名次,均不能获得学习积分.经统计,小明每天在第1局四人赛中获得3分、2分、1分的概率分别为14,12,14,在第2局四人赛中获得2分、1分的概率分别为14,34.(1)设小明每天获得的得分为X,求X的分布列和数学期望;(2)若小明每天赛完20局,设小明在每局四人赛中获得第1名从而赢得该局比赛的概率为14,每局是否赢得比赛相互独立,请问在每天的20局四人赛中,小明赢得多少局的比赛概率最大?[听课记录] 本题属于n,p固定,探究以k为自变量的离散函数(数列)f(k)=C20k0.25k(1-0.25)20-k,k=0,1,…,20是否存在最值的问题,除本例解法外,也可以利用比商法,结合函数(数列)的单调性求解.[跟进训练]1.第十四届全国冬季运动会(以下简称冬运)于2024年2月17日至2月27日举行,为进一步增强群众的法治意识,提高群众冬运法律知识水平和文明素质,让法治精神携手冬运走进千家万户,某市有关部门在该市市民中开展了“迎接冬运·法治同行”主题法治宣传教育活动.该活动采取线上、线下相结合的方式,线上有“知识大闯关”冬运法律知识普及类趣味答题,线下有“冬运普法”知识讲座,实现“冬运+普法”的全新模式.其中线上“知识大闯关”答题环节共计30个题目,每个题目2分,满分60分,现在从参与作答“知识大闯关”题目的市民中随机抽取1000名,将他们的作答成绩分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],并绘制了如图所示的频率分布直方图.5/5 (1)请估计被抽取的1000名市民作答成绩的平均数和中位数; (2)视频率为概率,现从所有参与“知识大闯关”活动的市民中随机抽取20名,调查其掌握各类冬运法律知识的情况.记k名市民的成绩在[40,60]的概率为P(X=k),k=0,1,2,…,20.请估计这20名市民的作答成绩在[40,60]的人数为多少时P(X=k)最大?并说明理由. 探究问题2 探究函数f(p)=Cnkpkqn-k(k=0,1,2,…,n,n∈Z,0<p<1,p+q=1)的最值取得情况,其中p为自变量,n,k为常数.由f′(p)=Cnk[kpk-1(1-p)n-k-pk(n-k)(1-p)n-k-1]=Cnkpk-1(1-p)n-k-1[k(1-p)-(n-k)p]=Cnkpk-1(1-p)n-k-1(k-np)可知,(1)当k=0时,f′(p)<0恒成立,f(p)在(0,1)上单调递减,f(p)无最值;(2)当k=n时,f′(p)>0恒成立,f(p)在(0,1)上单调递增,f(p)无最值;(3)当k=1,2,…,n-1时,由于当p<kn时,f′(p)>0,f(p)单调递增,当p>kn时,f′(p)<0,f(p)5/5 单调递减,故当p=kn时,f(p)取得最大值,f(p)max=fkn.又当p→0,f(p)→0,当p→1时,f(p)→0,从而f(p)无最小值.上述两个问题的解决运用了函数与方程的思想,问题1中通过解不等式fkfk-1≥1比较f(k)与f(k-1)的大小.问题2中通过求导判断函数的单调性求出最值.出于实际意义,一般更关注概率的最大值点的取得情况.存在最大值点的前提下,若视k为自变量,最大值点为某个随机变量,也可能是两个.若视p为自变量,f(p)=Cnkpkqn-k,n,k为常数,相当于以p为自变量的多项式函数在(0,1)求最大值,最大值点只有一个.[典例2] (2018·全国Ⅰ卷)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?[听课记录] 命题者以概率p为自变量,视角新颖,求解该题除了判断分布类型,写分布列外,在解题过程中主要的难点来自用函数的思想来解决问题,应用导数求最大值点.并且在(2)5/5 问中要通过计算期望的数值做分析和决策.涉及求值、求值域、求参数的取值范围等问题时,树立函数意识,列出相应的函数解析式,将问题转化为求函数值和函数最值的问题来研究.[跟进训练]2.甲、乙两人进行下象棋比赛(没有平局),采用“五局三胜”制.已知在每局比赛中,甲获胜的概率为p,0<p<1.(1)设甲以3∶1获胜的概率为f(p),求f(p)的最大值;(2)记(1)中,f(p)取得最大值时p的值为p0,以p0作为p的值,用X表示甲、乙两人比赛的局数,求X的分布列和数学期望E(X). 5/5
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023年新高考一轮复习讲义第18讲 导数与函数的极值、最值(解析版)
分布列概率的三大最值问题(解析版)
分布列概率的三大最值问题(学生版)
2024年高考数学一轮复习讲义(学生版)第8章 §8.11 圆锥曲线中范围与最值问题
2025年高考数学一轮讲义第2章 高考研究在线2 高考试题中的抽象函数
2025年高考数学一轮讲义第4章 高考培优5 与三角形有关的范围(最值)问题
2025年高考数学一轮讲义第5章 高考研究在线5 平面向量与三角形“四心”的交汇问题
2025年高考数学一轮讲义第7章 高考研究在线7 从“一题多解”“一题多变”角度探究立体几何
2025年高考数学一轮讲义第8章 第10课时 圆锥曲线中的范围、最值问题
2025年高考数学一轮讲义第8章 高考研究在线8 探究“极点、极线”在高考圆锥曲线中的应用
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-10-02 14:00:01
页数:5
价格:¥1
大小:514.22 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划