首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年高考数学一轮复习讲义(学生版)第4章 §4.8 正弦定理、余弦定理
2024年高考数学一轮复习讲义(学生版)第4章 §4.8 正弦定理、余弦定理
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§4.8 正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容===2Ra2=;b2=;c2=变形(1)a=2RsinA,b=,c=;(2)sinA=,sinB=,sinC=;(3)a∶b∶c=____________cosA=;cosB=;cosC=2.三角形解的判断A为锐角A为钝角或直角图形关系式a=bsinAbsinA<a<ba≥ba>b解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=aha(ha表示边a上的高);(2)S===;7 (3)S=(r为三角形的内切圆半径).常用结论在△ABC中,常有以下结论:(1)∠A+∠B+∠C=π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a>b⇔A>B⇔sinA>sinB,cosA<cosB.(4)sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC;sin =cos ;cos =sin .(5)三角形中的射影定理在△ABC中,a=bcosC+ccosB;b=acosC+ccosA;c=bcosA+acosB.(6)三角形中的面积S=.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.( )(2)在△ABC中,若sinA>sinB,则A>B.( )(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.( )(4)当b2+c2-a2>0时,△ABC为锐角三角形.( )教材改编题1.在△ABC中,AB=5,AC=3,BC=7,则∠BAC等于( )A.B.C.D.2.记△ABC的内角A,B,C的对边分别为a,b,c,若△ABC的面积为4,a=2,B=30°,则c等于( )A.8B.4C.D.3.在△ABC中,角A,B,C的对边分别为a,b,c,已知B=30°,b=,c=2,则C=.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2022·新高考全国Ⅰ)记△ABC的内角A,B,C的对边分别为a,b,c,已知=7 .(1)若C=,求B;[切入点:二倍角公式化简](2)求的最小值.[关键点:找到角B与角C,A的关系]7 思维升华 解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1 (2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A-B)=sinBsin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=,求△ABC的周长.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 正弦定理、余弦定理的简单应用命题点1 三角形的形状判断例2 (1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-acosB=(2a-b)cosA,7 则△ABC的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形(2)在△ABC中,a,b,c分别为角A,B,C的对边,=sin2,则△ABC的形状为( )A.直角三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形听课记录:______________________________________________________________________________________________________________________________________延伸探究 将本例(2)中的条件“=sin2”改为“=,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A+B+C=π这个结论.命题点2 三角形的面积例3 (2022·浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=c,cosC=.(1)求sinA的值;(2)若b=11,求△ABC的面积.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 三角形面积公式的应用原则7 (1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3 与平面几何有关的问题例4 (2023·厦门模拟)如图,已知△ABC的内角A,B,C所对的边分别是a,b,c,b(1+cosC)=csin∠ABC且△ABC的外接圆面积为.(1)求边c的长;(2)若a=5,延长CB至M,使得cos∠AMC=,求BM.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2 (1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是( )A.若acosA=bcosB,则△ABC一定是等腰三角形B.若bcosC+ccosB=b,则△ABC是等腰三角形C.若==,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形(2)在①b2+ac=a2+c2;②cosB=bcosA;③sinB+cosB=这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=,b=,求△ABC的面积.________________________________________________________________________________________________________________________________________________________________________________________________________________________7 ________________________________________________________________________(3)(2022·重庆八中模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,在①c(sinA-sinC)=(a-b)(sinA+sinB);②2bcosA+a=2c;③acsinB=a2+c2-b2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B的大小;②求sinA+sinC的取值范围;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________③如图所示,当sinA+sinC取得最大值时,若在△ABC所在平面内取一点D(D与B在AC两侧),使得线段DC=2,DA=1,求△BCD面积的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________7
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学总复习:正弦定理和余弦定理
【高考讲坛】2023高考数学一轮复习 第3章 第6节 正弦定理和余弦定理课后限时自测 理 苏教版
2023版高考数学一轮复习课后限时集训30正弦定理余弦定理含解析20230318194
(广东专用)2022高考数学第一轮复习用书 第39课 正弦定理、余弦定理 文
第四章 §4.8 正弦定理、余弦定理
第四章 §4.8 正弦定理、余弦定理
2023年新高考一轮复习讲义第28讲 正弦定理和余弦定理(解析版)
2023年新高考一轮复习讲义第28讲 正弦定理和余弦定理(原卷版)
数学一轮复习专题6.4 正弦定理、余弦定理的应用 (新教材新高考)(练)学生版
2024年高考数学一轮复习(新高考版) 第4章 §4.8 正弦定理、余弦定理
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-09-12 21:00:01
页数:7
价格:¥1
大小:1.09 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划