首页

2024年高考数学一轮复习: 函数与基本初等函数 第04讲 指数与指数函数(讲义)(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

第04讲指数与指数函数目录考点要求考题统计考情分析(1)理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质.(2)通过实例,了解指数函数的实际意义,会画指数函数的图象.(3)理解指数函数的单调性、特殊点等性质,并能简单应用.2022年甲卷第12题,5分2020年新高考II卷第11题,5分从近五年的高考情况来看,指数运算与指数函数是高考的一个重点也是一个基本点,常与二次函数、幂函数、对数函数、三角函数综合,考查数值大小的比较和函数方程问题. 1、指数及指数运算(1)根式的定义:一般地,如果,那么叫做的次方根,其中,,记为,称为根指数,称为根底数.(2)根式的性质:当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数.当为偶数时,正数的次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算中的一个参数,为底数,为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂;②零指数幂;③负整数指数幂,;④的正分数指数幂等于,的负分数指数幂没有意义.(5)有理数指数幂的性质①,,;②,,;③,,;④,,.2、指数函数图象性质①定义域,值域②,即时,,图象都经过点③,即时,等于底数④在定义域上是单调减函数在定义域上是单调增函数 ⑤时,;时,时,;时,⑥既不是奇函数,也不是偶函数【解题方法总结】1、指数函数常用技巧(1)当底数大小不定时,必须分“”和“”两种情形讨论.(2)当时,,;的值越小,图象越靠近轴,递减的速度越快.当时,;的值越大,图象越靠近轴,递增速度越快.(3)指数函数与的图象关于轴对称.【典例例题】题型一:指数运算及指数方程、指数不等式【例1】(2023·海南省直辖县级单位·统考模拟预测)(    )A.B.C.D.【答案】B【解析】.故选:B.【对点训练1】(2023·全国·高三专题练习)下列结论中,正确的是(     )A.设则B.若,则C.若,则D.【答案】B【解析】对于A,根据分式指数幂的运算法则,可得,选项A错误;对于B,,故,选项B正确;对于C,,,因为,所以,选项C错误;对于D,,选项D错误.故选:B. 【对点训练2】(2023·全国·高三专题练习)(    )A.B.C.D.【答案】B【解析】.故选:B【对点训练3】(2023·全国·高三专题练习)甲、乙两人解关于x的方程,甲写错了常数b,得到的根为或x=,乙写错了常数c,得到的根为或,则原方程的根是(    )A.或B.或C.或D.或【答案】D【解析】令,则方程可化为,甲写错了常数b,所以和是方程的两根,所以,乙写错了常数c,所以1和2是方程的两根,所以,则可得方程,解得,所以原方程的根是或故选:D【对点训练4】(2023·全国·高三专题练习)若关于的方程有解,则实数的取值范围是(    )A.B.C.D.【答案】A【解析】方程有解,有解,令,则可化为有正根,则在有解,又当时,所以,故选:. 【对点训练5】(2023·上海青浦·统考一模)不等式的解集为______.【答案】【解析】函数在R上单调递增,则,即,解得,所以原不等式的解集为.故答案为:【对点训练6】(2023·全国·高三专题练习)不等式的解集为___________.【答案】【解析】由,可得.令,因为均为上单调递减函数则在上单调逆减,且,,故不等式的解集为.故答案为:.【解题总结】利用指数的运算性质解题.对于形如,,的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如或的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质【例2】(多选题)(2023·全国·高三专题练习)函数的图象可能为(    )A.B.C.D. 【答案】ABD【解析】根据函数解析式的形式,以及图象的特征,合理给赋值,判断选项.当时,,图象A满足;当时,,,且,此时函数是偶函数,关于轴对称,图象B满足;当时,,,且,此时函数是奇函数,关于原点对称,图象D满足;图象C过点,此时,故C不成立.故选:ABD【对点训练7】(2023·全国·高三专题练习)已知的定义域为R,则实数a的取值范围是______.【答案】【解析】∵的定义域为R,∴0对任意x∈R恒成立,即恒成立,即对任意恒成立,,则.故答案为.【对点训练8】(2023·宁夏银川·校联考二模)已知函数,,则其值域为_______.【答案】【解析】令,∵,∴,∴,又关于对称,开口向上,所以在上单调递减,在上单调递增,且,时,函数取得最小值,即,时,函数取得最大值,即,.故答案为:.【对点训练9】(2023·全国·高三专题练习)已知函数在 内的最大值是最小值的两倍,且,则______【答案】或【解析】当时,函数在内单调递增,此时函数的最大值为,最小值为,由题意得,解得,则,此时;当时,函数在内单调递减,此时函数的最大值为,最小值为,由题意得,解得,则,此时.故答案为:或.【对点训练10】(2023·全国·高三专题练习)函数是指数函数,则(    )A.或B.C.D.且【答案】C【解析】由指数函数定义知,同时,且,所以解得.故选:C【对点训练11】(2023·全国·高三专题练习)函数的大致图像如图,则实数a,b的取值只可能是(  )A.B.C.D. 【答案】C【解析】若,为增函数,且,与图象不符,若,为减函数,且,与图象相符,所以,当时,,结合图象可知,此时,所,则,所以,故选:C.【对点训练12】(2023·全国·高三专题练习)已知函数(且)的图象恒过定点A,若点A的坐标满足关于x,y的方程,则的最小值为(    )A.8B.24C.4D.6【答案】C【解析】因为函数图象恒过定点又点A的坐标满足关于,的方程,所以,即所以,当且仅当即时取等号;所以的最小值为4.故选:C.【对点训练13】(多选题)(2023·浙江绍兴·统考模拟预测)预测人口的变化趋势有多种方法,“直接推算法”使用的公式是,其中为预测期人口数,为初期人口数,为预测期内人口年增长率,为预测期间隔年数,则(    )A.当,则这期间人口数呈下降趋势B.当,则这期间人口数呈摆动变化C.当时,的最小值为3D.当时,的最小值为3【答案】AC 【解析】,由指数函数的性质可知:是关于n的单调递减函数,即人口数呈下降趋势,故A正确,B不正确;,所以,所以,,所以的最小值为3,故C正确;,所以,所以,,所以的最小值为2,故D不正确;故选:AC.【对点训练14】(多选题)(2023·山东聊城·统考二模)已知函数,则(    )A.函数是增函数B.曲线关于对称C.函数的值域为D.曲线有且仅有两条斜率为的切线【答案】AB【解析】根据题意可得,易知是减函数,所以是增函数,即A正确;由题意可得,所以,即对于任意,满足,所以关于对称,即B正确;由指数函数值域可得,所以,即,所以函数的值域为,所以C错误;易知,令,整理可得,令,即,易知,又因为,即, 所以,即,因此;即关于的一元二次方程无实数根;所以无解,即曲线不存在斜率为的切线,即D错误;故选:AB【解题总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题【例3】(2023·全国·高三专题练习)已知函数,若不等式在R上恒成立,则实数m的取值范围是________.【答案】.【解析】令因为在区间上是增函数,所以因此要使在区间上恒成立,应有,即所求实数m的取值范围为.故答案为:.【对点训练15】(2023·全国·高三专题练习)设,当时,恒成立,则实数m的取值范围是____________.【答案】【解析】由函数,均为在上的增函数,故函数是在上的单调递增函数,且满足,所以函数为奇函数,因为,即,可得恒成立,即在上恒成立,则满足,即,解得,所以实数的取值范围是.故答案为:.【对点训练16】(2023·全国·高三专题练习)已知不等式,对于恒成立,则实数的取值范围是_________. 【答案】,,【解析】设,,则,对于,恒成立,即,对于,恒成立,∴,即,解得或,即或,解得或,综上,的取值范围为,,.故答案为:,,﹒【对点训练17】(2023·全国·高三专题练习)若,不等式恒成立,则实数的取值范围是______.【答案】【解析】令,∵,∴,∵恒成立,∴恒成立,∵,当且仅当时,即时,表达式取得最小值,∴,故答案为.【对点训练18】(2023·上海徐汇·高三位育中学校考开学考试)已知函数是定义域为的奇函数.(1)求实数的值,并证明在上单调递增;(2)已知且,若对于任意的、,都有恒成立,求实数的取值范围.【解析】(1)因为函数是定义域为的奇函数,则,解得,此时,对任意的,,即函数的定义域为, ,即函数为奇函数,合乎题意,任取、且,则,所以,,则,所以,函数在上单调递增.(2)由(1)可知,函数在上为增函数,对于任意的、,都有,则,,因为,则.当时,则有,解得;当时,则有,此时.综上所述,实数的取值范围是.【解题总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题【例4】(2023·全国·合肥一中校联考模拟预测)已知函数,则不等式的解集为(    )A.B.C.D.【答案】B【解析】依题意,,,故, 故函数的图象关于中心对称,当时,,,单调递减,故在上单调递减,且,函数的图象关于中心对称,在上单调递减,,而,故或或,解得或,故所求不等式的解集为,故选:B.【对点训练19】(2023·上海浦东新·华师大二附中校考模拟预测)设.若函数的定义域为,则关于的不等式的解集为__________.【答案】【解析】若,对任意的,,则函数的定义域为,不合乎题意,所以,,由可得,因为函数的定义域为,所以,,解得,所以,,则,由可得,解得.因此,不等式的解集为.故答案为:.【对点训练20】(2023·河南安阳·统考三模)已知函数的图象关于坐标原点对称,则__________.【答案】/1.5【解析】依题意函数是一个奇函数,又,所以,所以定义域为,因为的图象关于坐标原点对称,所以,解得.又,所以, 所以,即,所以,所以.故答案为:.【对点训练21】(2023·江西景德镇·统考模拟预测)已知是定义在上的偶函数,且当时,,则满足的x的取值范围是______________.【答案】【解析】由函数性质知,,∴,即,解得,∴,故答案为:.【对点训练22】(2023·河南信阳·校联考模拟预测)已知实数,满足,,则__________.【答案】1【解析】因为,化简得.所以,又,构造函数,因为函数,在上都为增函数,所以函数在上为单调递增函数,由,∴,解得,,∴.故答案为:.【对点训练23】(多选题)(2023·黑龙江哈尔滨·哈尔滨三中校考二模)点在函数 的图象上,当,则可能等于(    )A.-1B.C.D.0【答案】BC【解析】由表示与点所成直线的斜率,又是在部分图象上的动点,图象如下:如上图,,则,只有B、C满足.故选:BC1.(2022·全国·统考高考真题)已知,则(    )A.B.C.D.【答案】A【解析】[方法一]:(指对数函数性质)由可得,而,所以,即,所以.又,所以,即,所以.综上,.[方法二]:【最优解】(构造函数)由,可得.根据的形式构造函数,则,令,解得,由知.在上单调递增,所以,即,又因为,所以. 故选:A.【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.2.(2022·北京·统考高考真题)已知函数,则对任意实数x,有(    )A.B.C.D.【答案】C【解析】,故A错误,C正确;,不是常数,故BD错误;故选:C.3.(2020·山东·统考高考真题)已知函数是偶函数,当时,,则该函数在上的图像大致是(    )A.B.C.D.【答案】B【解析】当时,,所以在上递减,是偶函数,所以在上递增.注意到,所以B选项符合. 故选:B

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2024-09-08 02:20:02 页数:18
价格:¥2 大小:1.20 MB
文章作者:180****8757

推荐特供

MORE