首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
七年级数学(第二章 整式加减)2.1 代数式(沪科版 学习、上课资料)
七年级数学(第二章 整式加减)2.1 代数式(沪科版 学习、上课资料)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/79
2
/79
3
/79
4
/79
剩余75页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2.1整式加减第二章整式加减 学习目标课时讲解1用字母表示数代数式列代数式单项式多项式整式及代数式的值 逐点导讲练课堂小结作业提升学习目标课时流程2 知1-讲感悟新知知识点用字母表示数11.用字母表示数用字母或含有字母的式子表示数或数量关系.在用字母表示数中,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来. 感悟新知2.用含有字母的式子表示数的书写规定(1)数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写;(2)数与字母相乘时,通常把数写在前面;(3)数字因数是1或-1时,“1”常省略不写;知1-讲 感悟新知(4)带分数与字母相乘时要将带分数化成假分数;(5)除法运算要表示成分数形式;(6)若式子后面有单位且式子是和或差的形式,式子应用括号括起来.知1-讲 感悟新知知1-讲特别提醒1.同一问题中,相同的字母必须表示相同的量,不同的量必须用不同的字母表示.2.用字母可以表示任意数或式子.用字母表示数后,同一个式子可以表示不同的含义.3.用字母表示实际问题中的某个量时,字母的取值必须使式子有意义且符合实际情况. 知1-练感悟新知填空:(1)买单价为6元的钢笔a支,共需_________元;(2)一台电视机的标价为a元,则打八折后的售价为___________元;(3)温度由30℃下降t℃后是_________℃;(4)大圆的半径为Rcm,小圆的半径为rcm,则圆环的面积是__________cm2.例1 知1-练感悟新知解题秘方:类比用具体数表示数量关系,用字母表示数量关系.答案:(1)6a(2)0.8a(3)(30-t)(4)(πR2-πr2) 知1-练感悟新知方法点拨用字母表示日常生活中的数或数量关系,仅仅是把具体数用字母代替了,其实际意义与具体数是一致的,它将个别数量关系转变为了一般数量关系. 知1-练感悟新知例2填空:(1)若m为整数,则2m为数,2m-1为_______数(填“奇”或“偶”);(2)三个连续偶数,若中间一个数为2n,则其余两个数分别为_________; 知1-练感悟新知(3)若k为整数,以被4除作为分类标准,则整数可分为__________________________共4类;(4)若一个两位数,其个位数字为a,十位数字为b,则这个两位数为________________. 知1-练感悟新知解题秘方:紧扣各类数的特征,用字母表示这些特征数.答案:(1)偶;奇(2)2n-2,2n+2(3)4k,4k+1,4k+2,4k+3(4)10b+a 知1-练感悟新知特别提醒(1)奇、偶数的区别在于能否被2整除,偶数能被2整除,奇数被2除余1;(2)连续自然数前后相差1;连续奇数或偶数前后相差2;(3)整数被4除可能的情况只有4种:整除、余1、余2、余3;(4)两位数的表示方法:十位数字×10+个位数字. 知1-练感悟新知如图2.1-1,有一块长为18米,宽为10米的长方形土地,现将三面留出宽都是x(0<x<8)米的小路,余下的部分种菜,用含x的式子表示:(1)菜地的长为___________米,宽为________米;(2)菜地的面积为_______________平方米.例3 知1-练感悟新知解题秘方:根据题中提供的数据以及长方形的面积公式解决问题. 知1-练感悟新知解:(1)菜地的长等于长方形土地的长减去2条小路的宽,菜地的宽等于长方形土地的宽减去1条小路的宽;(2)菜地的面积等于菜地的长乘菜地的宽.答案:(1)(18-2x);(10-x)(2)(18-2x)(10-x) 知1-练感悟新知方法点拨:用含字母的式子表示图形的面积要注意两点:一是找准图形中的已知量和未知量之间的数量关系;二是选择正确的面积公式. 知1-练感悟新知方法规律用字母表示数量关系“三要”:1.要辨析词语意义:应认真审题,审题时要对语言叙述中的关键词语所代表的意义进行仔细辨析.2.要分清数量关系:需分清语言叙述中各数量之间的和、差、倍、分关系,不要见多就加、见少就减、见倍就乘.3.要书写规范:必须按照用字母表示数的书写要求正确、规范地书写. 知2-讲感悟新知知识点代数式21.代数式的定义用运算符号把数或表示数的字母连接而成的式子,叫做代数式.单独一个字母或者一个数也是代数式. 感悟新知2.代数式的书写要求(1)数字与字母相乘时,数字在前,字母在后;(2)当字母和带分数相乘时,要把带分数化成假分数;(3)如果式中出现除法,一般写成分数形式;(4)若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位.知2-讲 感悟新知知2-讲特别提醒1.在一个式子中如果含有“=”“<”“>”“≤”“≥”或“≠”,那么这个式子就不是代数式,而是等式或不等式;2.单独一个字母或者一个数都可以写成它们与1的乘积,所以它们也是代数式;3.代数式中可以有括号,它的作用是指明运算顺序. 知2-练感悟新知下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+x-y;(6)5x-3y.例4 知2-练感悟新知解题秘方:紧扣代数式的定义进行判断,特别注意单独的一个数或一个字母也是代数式. 知2-练感悟新知解:(1)中含有“>”,(2)中含有“=”,因此(1)和(2)不是代数式.单独的一个数或一个字母也是代数式,因此(3)和(4)均是代数式.5+x-y是用加、减运算符号把5,x,y连接起来的,因此(5)是代数式.5x-3y是用乘、减两种运算符号将5,x,3,y连接起来的,因此(6)是代数式.故(3)(4)(5)(6)是代数式,(1)和(2)不是代数式. 知2-练感悟新知方法点拨本题运用定义法求解.因为代数式是由数、表示数的字母和运算符号组成的,并且单独的一个数或一个字母也是代数式,所以我们可以理解为凡是不含等号和不等号的式子都是代数式. 感悟新知知3-讲知识点列代数式31.列代数式把实际问题中与数量有关的语句用含有数字、字母和运算符号的式子表示出来. 感悟新知知3-讲特别解读列代数式的关键是要认真审题,弄清问题中各数量之间的关系和运算顺序,要注意:若列出的代数式是和或差的形式且后面要带单位,则必须将代数式用括号括起来. 感悟新知知3-讲2.列代数式常用的方法如表所示方法及注意点举例抓关键性词语,如“大”“小”“多”“少”“和”“差”“积”“商”“倍”等,弄清题目中的量及各个量之间的关系如“甲数的2倍与乙数除以3的商的差”中关键性词语是“倍”“除以”“商”“差”设甲数为x,乙数为y,则所列代数式为2x-弄清运算顺序,通常按照“先读先写”的顺序列式如“a与b的和与c的积”是“和”在“积”之前,则所列代数式为(a+b)c;而“a与b的积与c的和”是“积”在“和”之前则所列代数式为ab+c 感悟新知知3-讲对于层次较多的题目,可以采取“浓缩原题,分段处理,最后组装”的方式来处理如“x的3倍与y的立方的和与x的平方与y的倒数之差的乘积”,此题可浓缩为“两数和与两数差的积”,再分段处理,第一段为“3x+y3”,第二段为“x2-”,则所列代数式为(3x+y3)(x2-1y)正确运用括号,先括号内,后括号外;先小括号,后中括号再大括号如“1与x的差的5倍与y的差乘3xy”,所列代数式为3xy[5(1-x)-y] 感悟新知知3-讲特别提醒1.数字因数写在字母因数的前面,有多个字母因数时,要按字母表的顺序排列书写,如5abc.2.由实际问题列代数式时,要抓住关键词语,弄清题中的数量关系,理清运算顺序,熟记相关公式. 感悟新知知3-练[期中·北京]根据下列语句列出代数式:(1)x与y的和乘3的积的倒数;(2)x,y两数的平方差;(3)x,y两数和的平方的2倍.例5 知3-练感悟新知方法点拨在书写代数式时,要注意问题的语言叙述中所直接或间接表示的运算顺序.如“和的平方”表示先“求和”再“平方”,而“平方和”表示先“平方”再“求和”,要注意两者的区别. 知3-练感悟新知解题秘方:本题考查的知识点是列代数式,关键是能够紧扣文字叙述中揭示的数量关系,正确运用数学语言,即代数式来表示题意.解:(1)由题意可得.(2)由题意可得x2-y2.(3)由题意可得2(x+y)2. 知3-练感悟新知某校为积极响应贯彻国家“双减”政策,使课后服务更加丰富多彩,准备在网上订购一批某品牌的羽毛球拍和羽毛球,开设羽毛球课.经调查发现,羽毛球拍一副定价40元,羽毛球每个定价5元,“双十一”期间A、B两家网店均提供包邮服务,并给出了各自的优惠方案.例6 知3-练感悟新知A网店:买一副羽毛球拍送2个羽毛球;B网店:羽毛球拍和羽毛球都按定价的80%付款.已知要购买羽毛球拍30副,羽毛球x(x>60)个,若在A网店购买,需付款_______元(用含x的代数式表示);若在B网店购买,需付款________元(用含x的代数式表示). 知3-练感悟新知解题秘方:本题考查列代数式,根据题意用含x的代数式表示出从两家网店购买的付款情况是解决问题的关键. 知3-练感悟新知解:因为要购买羽毛球拍30副,羽毛球x个,所以在A网店购买,需付款40×30+(x-60)×5=(5x+900)元,在B网店购买,需付款40×30×80%+5x×80%=(4x+960)元.答案:(5x+900);(4x+960) 知3-练感悟新知方法点拨用含字母的式子表示实际问题中数量关系的关键是理解问题中的数量关系.这些数量关系中,除把文字“翻译”成字母表达式外,还要注意题中涉及的有关量之间存在的等量关系,如:路程=时间×速度,工作量=工作时间×工作效率,总价=单价×数量,各种面积公式等. 感悟新知知4-讲知识点单项式41.单项式由数和字母的积组成的代数式叫做单项式.单独的一个数或一个字母也是单项式. 知4-讲感悟新知特别解读1.“数和字母的积”包含:数与数的积、数与字母的积,字母与字母的积.2.定义中的“积”并非不含“除法”,只是要求数与字母、字母与字母之间不能有除法. 感悟新知知4-讲2.单项式的系数与次数(1)系数:单项式中的数字因数叫做这个单项式的系数.(2)次数:单项式中所有字母的指数的和叫做这个单项式的次数. 感悟新知知4-讲特别提醒:(1)单项式的系数包括它前面的符号,且只与数字因数有关,而单项式的次数只与字母的指数有关.(2)确定一个单项式的次数时,要注意:①没有写指数的字母,实际上其指数是“1”,计算时不要将其遗漏;②不要把系数的指数当成字母的指数一同计算.如52mn4的次数是1+4=5,不能把系数的指数“2”当成字母的指数. 知4-讲感悟新知警示误区指数和次数是两个不同的概念,指数是单个字母的指数,而次数是所有字母的指数之和. 知4-练感悟新知找出下列各式中的单项式,并写出单项式的系数和次数.(1)-m;(2)-;(3);(4)(a+b)h;(5)23xy3;(6)πr2.例7 知4-练感悟新知解题秘方:利用单项式的定义及单项式中系数和次数的定义解决问题.解:单项式:(1)(2)(5)(6).这些单项式的系数分别是-1,-,8,π.这些单项式的次数分别是1,2,4,2. 知4-练感悟新知方法点拨:识别单项式的两个条件:①不含运算符号“+”或“-”;②分母中不含有字母. 知4-练感悟新知特别警示确定单项式系数与次数的两易漏、三易错:两易漏:1.易漏系数1或-1,针对只含字母因式的单项式;2.易漏指数1.三易错:1.易将系数的指数当作字母的指数;2.易将分子为1的分数系数写成整数系数;3.易将数字π当成字母. 知4-练感悟新知已知2kx2yn是关于x,y的一个单项式,且系数是7,次数是5,那么k=________,n=_________.例8 知4-练感悟新知答案:;3解题秘方:根据单项式的系数和次数的确定方法求值.解:由单项式的系数是7,可知2k=7,所以k=;由单项式的次数是5,可知x和y的指数和为5,即2+n=5,所以n=3. 知4-练感悟新知方法点拨根据单项式的系数与次数的概念建立与要求字母有关的简易方程即可求出要求字母的值,体现了方程思想. 感悟新知知5-讲知识点多项式51.多项式几个单项式的和叫做多项式.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”;(2)分母中不含有字母. 知5-讲感悟新知特别提醒1.多项式是由单项式组成的,但不能说多项式包含单项式,它们是两个不同的概念,没有从属关系.2.单项式的次数是所有字母指数的和,而多项式的次数是多项式中次数最高项的次数,二者不能混淆. 感悟新知知5-讲2.多项式的项在多项式里,每个单项式(连同符号)叫做多项式的项,其中不含字母的项,叫做常数项,一个多项式含有几项,这个多项式就叫做几项式.3.多项式的次数一个多项式里,次数最高的项的次数,叫做这个多项式的次数. 感悟新知知5-练多项式a3b3-4ab4-b-的最高次项是什么?一次项系数是什么?常数项是什么?它是几次几项式?例9 知5-练感悟新知解题秘方:利用多项式的项及次数的定义进行辨析.解:这个多项式的最高次项是a3b3,一次项系数是-1,常数项是-,它是六次四项式. 知5-练感悟新知方法点拨1.多项式的每一项都包括它前面的符号,且每一项都是单项式.2.多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和.3.一个多项式有几项,就叫几项式. 感悟新知知5-练已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3项和x2项,求m,n的值.例10 知5-练感悟新知解题秘方:根据多项式的结构中不含某项的特征,求出系数中待定字母的值.解:因为多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3项和x2项,所以-(m+5)=0,且n-1=0,解得m=-5,n=1. 知5-练感悟新知特别提醒不含某一项,说明这一项的系数为0.若一个多项式的值与某字母的取值无关,则该多项式中含这个字母的项的和为0. 感悟新知知6-讲知识点整式及代数式的值61.定义单项式与多项式统称为整式. 感悟新知知6-讲2.代数式的值用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值. 感悟新知知6-讲3.求代数式的值的一般步骤(1)代入:用指定的字母的数值代替多项式里的字母,其他的运算符号和原来的数都不能改变.(2)计算:按照多项式指明的运算,并根据有理数的运算方法计算. 知6-讲感悟新知特别解读1.单项式是整式;2.多项式是整式;3.如果一个式子既不是单项式又不是多项式,那么它一定不是整式. 感悟新知知6-练将式子:,,-y,π(x2-y2),a2,7x-1,9a2+-2填入相应的大括号中.单项式:{…};多项式:{…};整式:{ …}.例11 知6-练感悟新知解题秘方:利用单项式及多项式的定义识别整式中的单项式和多项式.解:单项式:{,a2,…};多项式:{-y,π(x2-y2),7x-1,…};整式:{,a2,-y,π(x2-y2),7x-1,…}. 知6-练感悟新知方法点拨判断一个式子是单项式还是多项式的方法:首先判断它是否是整式,若分母中含字母,则一定不是整式,也不可能是单项式或多项式.若是整式,再判断它是单项式还是多项式,单项式与多项式的区别在于是否含有加减运算,整式中一般含加减运算的是多项式,不含加减运算的是单项式. 感悟新知知6-练当a=2,b=-1时,求下列代数式的值:(1)(a-b)2;(2)(a+b)(a-b);(3)(a+b)2.例12 知6-练感悟新知解题秘方:把a,b的值分别代入代数式(a-b)2,(a+b)(a-b),(a+b)2中,再按运算顺序计算即可. 知6-练感悟新知解:(1)当a=2,b=-1时,原式=[2-(-1)]2=32=9.(2)当a=2,b=-1时,原式=[2+(-1)]×[2-(-1)]=1×3=3.(3)当a=2,b=-1时,原式=[2+(-1)]2=12=1. 知6-练感悟新知方法点拨用直接代入法求代数式的值可以分三步:1.“当……时”,即指出字母的值;2.“原式=……”,即代入所给字母的值;3.计算. 感悟新知知6-练已知|a|=5,|b|=3,且ab<0,则a-b的值是()2或8B.-2或-8C.±2D.±8例13 知6-练感悟新知解题秘方:本题考查了绝对值与代数式求值,解决本题的关键是根据绝对值的性质求出a,b的值,然后分两种情况解题. 知6-练感悟新知解:因为|a|=5,|b|=3,所以a=±5,b=±3.因为ab<0,所以a,b异号,所以a=5,b=-3或a=-5,b=3.当a=5,b=-3时,a-b=5-(-3)=8;当a=-5,b=3时,a-b=-5-3=-8.所以a-b的值为8或-8.答案:D 知6-练感悟新知方法点拨用间接代入法求代数式的值,其实质是要先计算出相关字母的值,再把求得的值代入含字母的式子,计算出结果. 感悟新知知6-练当x2+x+5的值为7时,求3x2+3x-2的值.例14 知6-练感悟新知解题秘方:先将条件进行整理,再将要求的式子进行变形,然后代入求值.解:由x2+x+5的值为7,得x2+x=2,所以3x2+3x-2=3(x2+x)-2=3×2-2=4. 知6-练感悟新知技巧点拨要求的代数式的某部分与已知条件中的某部分相类似时,用整体代入法能使问题快速得到解决. 代数式代数式次数整式单项式系数项数多项式用字母表示数
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
第2章整式加减2.1代数式2.1.3代数式的值同步课件(沪科版七上数学)
第2章整式加减2.1代数式2.1.3代数式的值教案(沪科版七上)
第2章整式加减2.1代数式2代数式第1课时代数式课件(沪科版七上)
第2章整式加减2.1代数式2代数式第3课时整式课件(沪科版七上)
第2章整式加减2.1代数式3代数式的值课件(沪科版七上)
第2章整式加减2.1代数式1用字母表示数教案(沪科版七上数学)
第2章整式加减2.1代数式2代数式第1课时代数式教案(沪科版七上数学)
第2章整式加减2.1代数式2代数式第3课时整式教案(沪科版七上数学)
第2章整式加减2.1代数式3代数式的值教案(沪科版七上数学)
七年级数学(第八章 实数)8.2 整式乘法(沪科版 学习、上课资料)
文档下载
收藏
所属:
初中 - 数学
发布时间:2024-02-11 15:00:02
页数:79
价格:¥3
大小:2.88 MB
文章作者:浮城3205426800
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划