首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
四川省南充市南部中学2024届高三第四次月考数学(文)试题(Word版附解析)
四川省南充市南部中学2024届高三第四次月考数学(文)试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/17
2
/17
剩余15页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
南部中学高2021级高三第四次月考数学(文科)时间:120分钟总分:150分一、单项选择题.本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知全集,集合,则()A.B.C.D.【答案】B【解析】【分析】先求集合的补集,再根据并集运算求出结果.【详解】因为,,所以;因为,所以.故选:B.2.复数的共轭复数是()A.B.C.D.【答案】C【解析】【分析】根据复数代数形式的除法运算化简,再求出其共轭复数.【详解】因为,所以复数的共轭复数是.故选:C3.在△中,“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】【详解】试题分析:由正弦定理,得,由得, 即,由大边对大角得;当得,即,由正弦定理得,因此“”是“”的充要条件,故答案为C.考点:1、正弦定理的应用;2、充要条件的判断.4.若变量x,y满足约束条件则,则的最小值是()A.-1B.-6C.-10D.-15【答案】B【解析】【分析】根据约束条件作出不等式组表示的平面区域,将目标函数化成,表示直线在轴上的截距,然后将目标函数平移经过可行域,可得其最值.详解】由作出可行域,如图.设,化成,表示直线在轴上的截距.的最小值,即直线在轴上的截距最小.由图可知,直线过点时截距最小。此时.故选:B【点睛】本题考查线性规划问题,作图要准确,其目标函数的几何意义常有截距、斜率、距离等几种,属于基础题. 5.已知,则下列大小关系正确的是()AB.C.D.【答案】B【解析】【分析】根据不等式性质,不等式两边同时乘负数,改变不等号,不等式两边同时乘正数,不改变不等号,可得答案.【详解】对于A,因为,所以,故错误;对于B,因为,所以,又因为,所以,则,故正确;易知C,D错误.故选:B.6.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】A【解析】【分析】先将化简为,再根据三角函数的图象平移即可得出答案.【详解】,所以的图象向左平移个单位得:.故选:A.7.若,,,则()A.B.C D.【答案】C【解析】【分析】利用指数函数,对数函数以及三角函数的图象与性质即可求解.【详解】根据指数、对数的性质可得:,,因为,所以,所以故选:C.8.已知数列中,,则等于()A.B.C.D.【答案】A【解析】【分析】根据题意求出数列的通项公式,再求数列的前项和即可.【详解】当时,,当时,因为,所以,两式相减得:,经验证时,,符合,所以,所以,所以数列是首项为,公比为的等比数列,所以.故选:A.9.已知,则的值为()A.B.C.D.【答案】D 【解析】【分析】以为整体,利用诱导公式和二倍角的余弦公式运算求解.【详解】∵,故选:D.10.已知函数的值域为,那么实数的取值范围是()A.B.[-1,2)C.(0,2)D.【答案】B【解析】【分析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.11.在锐角三角形中,a,b,c分别是内角A,B,C的对应边,设A=2C,则的取值范围是()A.B.C.D.【答案】A【解析】【分析】由正弦定理把边化角,再用三角恒等变换化简,转化为三角函数的值域问题,即可求解【详解】由正弦定理可得 又因为三角形是锐角三角形,所以,即,也即,所以,所以,,,,所以取值范围是,故选:A12.已知函数,,若,,则的最大值为()A.B.C.D.【答案】D【解析】【分析】首先由,,再结合函数函数的图象可知,,这样转化,利用导数求函数的最大值.【详解】由题意得,,,即,令函数,则, 所以,时,,在上单调递减,时,,在上单调递增,又当时,,时,,作函数的图象如图所示.由图可知,当时,有唯一解,故,且,∴.设,,则,令解得,所以在上单调递增,在上单调递减,∴,即的最大值为.故选:D.【点睛】关键点点睛:本题考查利用导数求函数最值,本题的关键是观察与变形,,并且由函数图象判断,只有一个零点,所以,这样后面的问题迎刃而解.二、填空题:本题共4小题,每小题5分,共20分.13.已知命题:,总有.则为______.【答案】,使得【解析】【分析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得 故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.14.已知函数,则___________.【答案】2【解析】【分析】根据解析式求函数值即可.【详解】因为所以,故答案为:215.若函数,则_________【答案】【解析】【分析】先根据时,得当时,,进而得函数是以为周期的周期函数,再根据函数周期性求值即可得答案.【详解】解:因为时,,所以,故,所以,所以当时,.即当时,函数是以为周期的周期函数.所以.故答案为:.【点睛】本题考查函数的周期性,解题的关键在于根据时,得当 时,,进而根据周期性得.16.已知函数,若不等式上恒成立,则实数的取值范围为__________.【答案】【解析】【分析】由已知不等式化为,当时,比较、的大小关系,得出在的单调性,即可求出的取值范围.【详解】因为,则,由,可得在上恒成立,令,其中,则,所以,函数在上为增函数,则,即,所以,函数在上为增函数,则在上恒成立,即在上恒成立,故.故答案为:.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键就是利用同构思想,将所求不等式转化为,将问题转化为函数在上的单调性问题,结合导数求解.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数(I)求的值(II)求的最小正周期及单调递增区间.【答案】(I)2;(II)的最小正周期是,.【解析】【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值. (Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间.【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为.所以的最小正周期是.由正弦函数的性质得,解得,所以,的单调递增区间是.【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角A;(2)若,求△ABC的面积.【答案】(1)(2)【解析】【分析】(1)由正弦定理得到,再由余弦定理求出;(2)由正弦定理及三角恒等变换得到,结合求出,结合第一问求出,利用面积公式进行求解.【小问1详解】 由题意及正弦定理得,即,即所以,因为,所以【小问2详解】由,得,所以由正弦定理得,又因为,所以,,所以又,所以,所以,从而△ABC是等边三角形.因为,所以.19.设是等差数列,是等比数列,公比大于0.已知,,.(1)求和的通项公式;(2)求数列的前n项和.【答案】(1),;(2).【解析】【分析】(1)由题意列出关于公差和公比的方程组,求解即可得出通项公式(2)根据错位相减法即可求出数列的和.【详解】(1)设等差数列的公差为d,等比数列的公比为q.依题意,得又因为公比大于0,解得 故,.所以,的通项公式为,的通项公式为.(2)由(1)知,记的前n项和为,则记,①则,②①−②得,,,,所以.【点睛】本题主要考查了等差等比数列的基本量的计算,错位相减法求和,属于中档题.20.已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.【答案】(1),;(2)最大值为,最小值为【解析】【分析】(1)对函数求导,根据函数在处取极值得出,再由极值为,得出,构造一个关于的二元一次方程组,便可解出的值;(2)由(1)可知,求出,利用导数研究函数在上的单调性,比较极值和端点值的大小,即可得出在上的最大值与最小值. 【详解】解:(1)由题可知,,的定义域为,,由于在处有极值,则,即,解得:,,(2)由(1)可知,其定义域是,,令,而,解得,由,得;由,得,则在区间上,,,的变化情况表如下:120单调递减单调递增可得,,,由于,则,所以,函数在区间上的最大值为,最小值为.【点睛】本题考查已知极值求参数值和函数在闭区间内的最值问题,考查利用导函数研究函数在给定闭区间内的单调性,以及通过比较极值和端点值确定函数在闭区间内的最值,考查运算能力. 21.已知函数.(1)讨论的单调性;(2)若,,求证:.【答案】(1)在单调递增,在单调递减;(2)见解析.【解析】【分析】(1)分别令,求出单调性;(2)设,则,要证:,即证:,而,令,,等价于,,证明的单调性即可.【详解】(1)函数定义域为,令得,令得,故在单调递增,在单调递减.(2),不妨设,则,要证:,即证:……(*),而,令,,(*)等价于,,设,,令,在恒成立,则在单调递增,故,故在单调递增, 故,故原命题得证.【点睛】本题考查利用导数求单调区间以及利用导数证明不等式,考查逻辑思维能力和运算能力,属于高考常考题型.选做题:第22题,23题中选做一题,多做或做错按照第一题计分选修4-4(本题满分10分)22.在平面直角坐标系xOy中,直线l的方程为,曲线C的参数方程为(t为参数).以O点为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)设射线与直线l和曲线C分别交于点M,N,求的最小值.【答案】(1),;(2)1.【解析】【分析】(1)由参数方程、极坐标方程和直角坐标方程的互化公式,结合同角三角函数的平方关系,可得所求;(2)求得,,运用辅助角公式,结合正弦函数的最值,计算可得所求最小值.【详解】将代入,得直线的极坐标方程为,即,由消去参数,得曲线的普通方程为,将代入, 得曲线的极坐标方程为,由射线与交于点,得,即,由射线与曲线交于点,得,即,则,所以当时,得时,取得最小值.选修4-523.设函数.(1)解不等式;(2)若关于x的方程没有实数根,求实数m的取值范围.【答案】(1);(2).【解析】【分析】(1)分段讨论去绝对值解不等式即可;(2)先将题意转化为没有实数根,再求值域,利用 取值为值域的补集,计算即得结果.【详解】解:(1)当时,,得,所以;当时,,得,所以;当时,,得,所以.综上,原不等式的解集为;(2)方程没有实数根,即没有实数根,令,当且仅当时,即时等号成立,即值域为,若没有实数根,则,即,所以实数m的取值范围为.【点睛】方法点睛:1、绝对值不等式的解法:(1)利用绝对值不等式的几何意义求解,体现了数形结合的思想;(2)利于“零点分段法”去绝对值进行求解,体现了分类讨论思想;(3)通过构造函数,利用函数图象求解,体现了函数与方程思想.2、不等式恒成立问题通常可转化成函数最值来处理.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
四川省南部中学2023届高三理科数学下学期高考考前模拟训练(一)(Word版附解析)
四川省盐亭中学2023届高三数学(文)上学期12月第四次模拟试题(Word版附解析)
四川省南充市南部县第二中学2023-2024学年高二生物上学期10月月考试题(Word版附解析)
四川省南充市南部县第二中学2023-2024学年高二历史上学期10月月考试题(Word版附解析)
四川省南充市南部县第二中学2023-2024学年高二政治上学期10月月考试题(Word版附解析)
四川省南充市南部县第二中学2023-2024学年高二英语上学期10月月考试题(Word版附解析)
四川省南充市南部县第二中学2023-2024学年高二数学上学期10月月考试题(Word版附解析)
四川省南充市南部县二中2023-2024学年高二语文上学期10月月考试题(Word版附解析)
四川省南充市阆中中学2024届高三一模数学(理)试题(Word版附解析)
四川省南充市阆中中学2024届高三一模数学(文)试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-12-29 16:45:02
页数:17
价格:¥2
大小:804.02 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划