首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024年新高考数学一轮复习题型归纳与达标检测第18讲导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第18讲导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
《导数的应用——利用导数研究不等式恒成立(能成立)问题》达标检测[A组]—应知应会1.已知函数f(x)=x+,g(x)=2x+a,若∀x1∈,∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是( )A.a≤1 B.a≥1C.a≤2D.a≥2【解析】选A.由题意知f(x)min≥g(x)min(x∈[2,3]),因为f(x)min=5,g(x)min=4+a,所以5≥4+a,即a≤1,故选A.2.(2020·吉林白山联考)设函数f(x)=ex-,若不等式f(x)≤0有正实数解,则实数a的最小值为________.【解析】原问题等价于存在x∈(0,+∞),使得a≥ex(x2-3x+3),令g(x)=ex(x2-3x+3),x∈(0,+∞),则a≥g(x)min,而g′(x)=ex(x2-x).由g′(x)>0可得x∈(1,+∞),由g′(x)<0可得x∈(0,1).据此可知,函数g(x)在区间(0,+∞)上的最小值为g(1)=e.综上可得,实数a的最小值为e.3.(2020·西安质检)已知函数f(x)=lnx,g(x)=x-1.(1)求函数y=f(x)的图象在x=1处的切线方程;(2)若不等式f(x)≤ag(x)对任意的x∈(1,+∞)均成立,求实数a的取值范围.【解析】(1)因为f′(x)=,所以f′(1)=1.又f(1)=0,所以切线的方程为y-f(1)=f′(1)(x-1),即所求切线的方程为y=x-1.(2)易知对任意的x∈(1,+∞),f(x)>0,g(x)>0.①当a≥1时,f(x)≤g(x)≤ag(x);②当a≤0时,f(x)>0,ag(x)≤0,所以不满足不等式f(x)≤ag(x);③当0<a<1时,设φ(x)=f(x)-ag(x)=lnx-a(x-1),则φ′(x)=-a, 令φ′(x)=0,得x=,当x变化时,φ′(x),φ(x)的变化情况下表:xφ′(x)+0-φ(x)极大值所以φ(x)max=φ>φ(1)=0,不满足不等式.综上,实数a的取值范围为[1,+∞).4.已知函数f(x)=ax-ex(a∈R),g(x)=.(1)求函数f(x)的单调区间;(2)∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求a的取值范围.【解析】(1)因为f′(x)=a-ex,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=lna.由f′(x)>0得f(x)的单调递增区间为(-∞,lna);由f′(x)<0得f(x)的单调递减区间为(lna,+∞).(2)因为∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex,则ax≤,即a≤.设h(x)=,则问题转化为a≤,由h′(x)=,令h′(x)=0,则x=.当x在区间(0,+∞)内变化时,h′(x),h(x)的变化情况如下表:x(0,)(,+∞)h′(x)+0-h(x)单调递增极大值单调递减由上表可知,当x=时,函数h(x)有极大值,即最大值为.所以a≤.5.(2020·河南郑州质检)已知函数f(x)=lnx-a(x+1),a∈R,在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间; (2)若存在x0>1,当x∈(1,x0)时,恒有f(x)-+2x+>k(x-1)成立,求k的取值范围.【解析】(1)由已知可得f(x)的定义域为(0,+∞).因为f′(x)=-a,所以f′(1)=1-a=0,所以a=1,所以f′(x)=-1=,令f′(x)>0得0<x<1,令f′(x)<0得x>1,所以f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f(x)-+2x+>k(x-1)可化为lnx-+x->k(x-1).令g(x)=lnx-+x--k(x-1)(x>1),则g′(x)=-x+1-k=,令h(x)=-x2+(1-k)x+1,x>1,h(x)的对称轴为x=.①当≤1时,即k≥-1,易知h(x)在(1,x0)上单调递减,所以h(x)<h(1)=1-k,若k≥1,则h(x)≤0,所以g′(x)≤0,所以g(x)在(1,x0)上单调递减,所以g(x)<g(1)=0,不合题意.若-1≤k<1,则h(1)>0,所以必存在x0使得x∈(1,x0)时,g′(x)>0,所以g(x)在(1,x0)上单调递增,所以g(x)>g(1)=0恒成立,符合题意.②当>1时,即k<-1,易知必存在x0,使得h(x)在(1,x0)上单调递增.所以h(x)>h(1)=1-k>0,所以g′(x)>0,所以g(x)在(1,x0)上单调递增.所以g(x)>g(1)=0恒成立,符合题意.综上,k的取值范围是(-∞,1).6.设f(x)=xex,g(x)=x2+x.(1)令F(x)=f(x)+g(x),求F(x)的最小值;(2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.【解析】(1)因为F(x)=f(x)+g(x)=xex+x2+x,所以F′(x)=(x+1)(ex+1),令F′(x)>0,解得x>-1,令F′(x)<0,解得x<-1,所以F(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增.故F(x)min=F(-1)=--.(2)因为任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,所以mf(x1)-g(x1)>mf(x2)-g(x2)恒成立.令h(x)=mf(x)-g(x)=mxex-x2-x,x∈[-1,+∞), 即只需证h(x)在[-1,+∞)上单调递增即可.故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)上恒成立,故m≥,而≤e,故m≥e,即实数m的取值范围是[e,+∞).[B组]—强基必备1.已知函数f(x)=ax+x2-xlna(a>0,a≠1).(1)求函数f(x)的极小值;(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.【解析】(1)f′(x)=axlna+2x-lna=2x+(ax-1)lna.∵当a>1时,lna>0,函数y=(ax-1)lna在R上是增函数,当0<a<1时,lna<0,函数y=(ax-1)lna在R上也是增函数,∴当a>1或0<a<1时,f′(x)在R上是增函数,又∵f′(0)=0,∴f′(x)>0的解集为(0,+∞),f′(x)<0的解集为(-∞,0),故函数f(x)的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f(x)在x=0处取得极小值1.(2)∵存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,∴只需f(x)max-f(x)min≥e-1即可.由(1)可知,当x∈[-1,1]时,f(x)在[-1,0]上是减函数,在(0,1]上是增函数,∴当x∈[-1,1]时,f(x)min=f(0)=1,f(x)max为f(-1)和f(1)中的较大者.f(1)-f(-1)=(a+1-lna)-=a--2lna,令g(a)=a--2lna(a>0),∵g′(a)=1+-=2>0,∴g(a)=a--2lna在(0,+∞)上是增函数.而g(1)=0,故当a>1时,g(a)>0,即f(1)>f(-1);当0<a<1时,g(a)<0,即f(1)<f(-1).∴当a>1时,f(1)-f(0)≥e-1,即a-lna≥e-1. 由函数y=a-lna在(1,+∞)上是增函数,解得a≥e;当0<a<1时,f(-1)-f(0)≥e-1,即+lna≥e-1,由函数y=+lna在(0,1)上是减函数,解得0<a≤.综上可知,所求实数a的取值范围为∪[e,+∞).
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023届北师版高考数学一轮高考解答题专项一第2课时利用导数研究不等式恒(能)成立问题(Word版附解析)
2023高考数学一轮复习第3章导数及其应用第2节第4课时利用导数研究不等式恒成立求参数范围问题课时跟踪检测理含解析202302331114
第三章 §3.5 利用导数研究恒(能)成立问题
第三章 §3.5 利用导数研究恒(能)成立问题
2023年新高考一轮复习讲义第20讲 利用导数研究不等式的恒成立问题(解析版)
2023年新高考一轮复习讲义第20讲 利用导数研究不等式的恒成立问题(原卷版)
2024年新高考数学一轮复习题型归纳与达标检测第15讲导数的应用——导数与函数的单调性(达标检测)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第16讲导数的应用——导数与函数的极值、最值(达标检测)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第17讲导数的应用——利用导数证明不等式(达标检测)(Word版附解析)
2024年新高考数学一轮复习题型归纳与达标检测第17讲导数的应用——利用导数证明不等式(讲)(Word版附解析)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-11-08 15:20:01
页数:5
价格:¥2
大小:29.74 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划