首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/23
2
/23
剩余21页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)能力拓展题型一:弦长问题一、单选题1.(2022·福建厦门·模拟预测)已知抛物线的准线被圆所截得的弦长为,则( )A.1B.C.2D.42.(2022·黑龙江·哈尔滨三中模拟预测(文))己知直线l过抛物线的焦点,并且与抛物线C交于不同的两点A、B,若为线段的中点,则的值为( )A.4B.5C.6D.83.(2022·河南郑州·三模(文))斜率为1的直线l与椭圆相交于A,B两点,则的最大值为( )A.2B.C.D.二、多选题4.(2022·河北邯郸·二模)已知P是圆O:上的动点,点Q(1,0),以P为圆心,PQ为半径作圆P,设圆P与圆O相交于A,B两点.则下列选项正确的是( )A.当P点坐标为(2,0)时,圆P的面积最小B.直线AB过定点C.点Q到直线AB的距离为定值D.三、填空题5.(2022·江苏·模拟预测)在平面直角坐标系中,已知过抛物线焦点F的直线与抛物线相交于A,B两点,以为直径的圆分别与x轴交于异于F的P,Q两点,若,则线段的长为________.6.(2022·江苏泰州·模拟预测)已知抛物线,直线被抛物线C截得的弦长为 8,则抛物线C的准线方程为___.四、解答题7.(2022·全国·二模(理))已知动圆M经过定点,且与圆相内切.(1)求动圆圆心M的轨迹C的方程;(2)设点T在上,过点T的两条直线分别交轨迹C于A,B和P,Q两点,且,求直线AB的斜率和直线PQ的斜率之和.8.(2022·陕西·西北工业大学附属中学模拟预测(理))已知椭圆:的离心率为,直线交椭圆的弦长为.(1)求椭圆的方程;(2)经过定点的直线交椭圆于两点,椭圆的右顶点为,设直线,的斜率分别为,,求证:恒为定值.9.(2022·内蒙古·满洲里市教研培训中心三模(文))已知圆:,圆:,圆与圆、圆外切, (1)求圆心的轨迹方程(2)若过点且斜率的直线与交与两点,线段的垂直平分线交轴与点,证明的值是定值.10.(2022·北京·潞河中学三模)已知椭圆的一个顶点为,离心率为.(1)求椭圆的方程;(2)设过椭圆右焦点的直线交椭圆于两点,过原点的直线交椭圆于两点.若,求证:为定值.题型二:面积问题一、单选题1.(2022·江苏·南京师大附中模拟预测)平面直角坐标系中,点集, 则点集所覆盖的平面图形的面积为( )A.B.C.D.二、多选题2.(2022·湖南·模拟预测)已知双曲线,的左右焦点分别为,,双曲线C上两点A,B关于坐标原点对称,点P为双曲线C右支上上一动点,记直线PA,PB的斜率分别为,,若,,则下列说法正确的是( )A.B.C.的面积为D.的面积为1三、填空题3.(2022·内蒙古赤峰·三模(文))已知抛物线的焦点为,过且垂直与轴的直线与相交于,两点,若(为坐标原点)的面积为,则________四、解答题4.(2022·浙江·温州中学模拟预测)已知椭圆的上、下顶点分别为,抛物线在点处的切线l交椭圆于点M,N,交椭圆的短轴于点C,直线交x轴于点D.(1)若点C是的中点,求p的值;(2)设与的面积分别为,求的最大值.5.(2022·浙江·效实中学模拟预测)已知分别为椭圆的左、右焦点,长轴长为,分别为椭圆的上、下顶点,且四边形的面积为.(1)求椭圆的方程;(2)若椭圆的离心率为,过点的直线与曲线交于两点,设的中点为M,两点为曲 线上关于原点对称的两点,且,求四边形面积的取值范围.6.(2022·湖南·模拟预测)已知椭圆的左、右焦点分别为,,P为椭圆上一动点,直线与圆相切于Q点,且Q是线段的中点,三角形的面积为2.(1)求椭圆C的方程;(2)过点P(点P不在x轴上)作圆的两条切线、,切点分别为M,N,直线MN交椭圆C于点D、E两点,求三角形ODE的面积的取值范围.7.(2022·江苏苏州·模拟预测)已知椭圆且经过,,,中的三点,抛物线,椭圆的右焦点是抛物线的焦点.(1)求曲线,的方程;(2)点P是椭圆的点,且过点P可以作抛物线的两条切线,切点为A,B,求三角形面积的最大值. 题型三:中点弦问题一、多选题1.(2022·山东·烟台二中模拟预测)在平面直角坐标系xOy中,过点的直线l与抛物线C:交于A,B两点,点为线段AB的中点,且,则下列结论正确的为( )A.N为的外心B.M可以为C的焦点C.l的斜率为D.可以小于22.(2022·全国·模拟预测)法国数学家加斯帕·蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆的蒙日圆为,过上的动点作的两条切线,分别与交于,两点,直线交于,两点,则( )A.椭圆的离心率为B.面积的最大值为C.到的左焦点的距离的最小值为D.若动点在上,将直线,的斜率分别记为,,则二、填空题3.(2022·全国·模拟预测)已知双曲线E:的左、右焦点分别为、,过的直线l与双曲线的左、右两支分别交于P、Q两点,与y轴交于点C,M为线段PQ的中点.若,则双曲线E的离心率为______.三、解答题4.(2022·江苏南京·模拟预测)已知椭圆:()过点,直线: 与椭圆交于,两点,且线段的中点为,为坐标原点,直线的斜率为-0.5.(1)求椭圆的标准方程;(2)当时,椭圆上是否存在,两点,使得,关于直线对称,若存在,求出,的坐标,若不存在,请说明理由.5.(2022·新疆·三模(文))已知椭圆C:),O为坐标原点,若直线l与椭圆C交于A,B两点,线段AB的中点为M,直线l与直线OM的斜率乘积为.(1)求椭圆C的离心率;(2)若椭圆C经过点,求椭圆C的标准方程. 6.(2022·全国·模拟预测)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的标准方程;(2)若上存在,两点关于直线对称,且(为坐标原点),求的值.题型四:范围问题一、单选题1.(2022·江苏南通·模拟预测)设抛物线C:y2=4x的焦点为F,过F的直线C相交于A,B两点,则4|AF|+9|BF|的最小值为( )A.26B.25C.20D.18二、多选题2.(2022·江苏南通·模拟预测)在平面直角坐标系xOy中,已知F1,F2分别是椭圆的左,右焦点,点A,B是椭圆C上异于长轴端点的两点,且满足,则( )A.△ABF2的周长为定值B.AB的长度最小值为1 C.若AB⊥AF2,则λ=3D.λ的取值范围是[1,5]3.(2022·辽宁大连·二模)已知在平面直角坐标系中,,,,,,P为该平面上一动点,记直线PD,PE的斜率分别为和,且,设点P运动形成曲线F,点M,N是曲线F上位于x轴上方的点,且,则下列说法正确的有( )A.动点P的轨迹方程为B.△PAB面积的最大值为C.的最大值为5D.的最小值为4.(2022·全国·模拟预测)已知为坐标原点,经过点且斜率为的直线与双曲线相交于不同的两点,,则( )A.若时,则B.对任意的,存在直线使得C.对任意的,存在直线使得D.对任意的,存在直线使得三、解答题5.(2022·江苏泰州·模拟预测)已知椭圆)的左焦点为F,其离心率,过点F垂直于x轴的直线交椭圆于P,Q两点,.(1)求椭圆的方程;(2)若椭圆的下顶点为B,过点D(2,0)的直线l与椭圆相交于两个不同的点M,N,直线BM,BN的斜率分别为,求的取值范围. 6.(2022·湖南·长沙一中模拟预测)已知双曲线的离心率为2,F为双曲线的右焦点,直线l过F与双曲线的右支交于两点,且当l垂直于x轴时,;(1)求双曲线的方程;(2)过点F且垂直于l的直线与双曲线交于两点,求的取值范围.7.(2022·浙江·杭州高级中学模拟预测)如图,为抛物线的焦点,直线与抛物线交于、两点,中点为,当,时,到轴的距离与到点距离相等.(1)求的值;(2)若存在正实数,使得以为直径的圆经过点,求的取值范围. 8.(2022·全国·华中师大一附中模拟预测)如图,已知椭圆的离心率为,直线与圆交于M,N两点,.(1)求椭圆E的方程;(2)A,B为椭圆E的上、下顶点,过点A作直线交圆O于点P,交椭圆E于点Q(P,Q位于y轴的右侧),直线BP,BQ的斜率分别记为,,试用k表示,并求当时,△面积的取值范围. 9.(2022·浙江省杭州学军中学模拟预测)如图,在平面直角坐标系中,已知抛物线的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点,过线段的中点M且与x轴平行的直线依次交直线,,l于点P,Q,N.(1)求证:; (2)若线段上的任意一点均在以点Q为圆心、线段长为半径的圆内或圆上,若,求实数的取值范围;题型五:定点问题一、多选题1.(2022·重庆·三模)已知抛物线的焦点为F,为C上一点,.过C的准线上一点P,作C的两条切线,其中A、B为切点.则下列判断正确的是( )A.B.抛物线C的准线方程为C.以线段为直径的圆与C的准线相切D.直线恒过焦点F2.(2022·河北沧州·模拟预测)已知抛物线C:(>0)的焦点F与圆的圆心重合,直线与C交于两点,且满足:(其中O为坐标原点且A、B均不与O重合),则( )A.B.直线恒过定点C.A、B中点轨迹方程:D.面积的最小值为16二、填空题3.(2022·河北·模拟预测)已知抛物线的焦点为F,A,B为抛物线C上在第一象限的两点,记直线与直线的斜率分别为与,且,则直线恒过定点___________.4.(2022·四川遂宁·三模(理))已知抛物线:()的焦点F与圆的圆心重合,直线与C交于、两点,且满足:(其中为坐标原点且A,均不与重合),对于下列命题:①,; ②直线恒过定点;③A,中点轨迹方程:;④面积的最小值为16.以上说法中正确的有______.三、解答题5.(2022·江西师大附中三模(理))已知椭圆的右焦点为F,上顶点为M,O为坐标原点,若的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在直线l交椭圆于P,Q两点,且F点恰为的垂心?若存在,求出直线l的方程;若不存在,说明理由.6.(2022·广东广州·三模)在圆上任取一点,过点作轴的垂线段为垂足,线段上一点满足.记动点的轨迹为曲线(1)求曲线的方程;(2)设为原点,曲线与轴正半轴交于点,直线与曲线交于点,与轴交于点,直线与曲线交于点,与轴交于点,若,求证:直线经过定点. 7.(2022·重庆八中模拟预测)已知抛物线的焦点为F,不过原点的直线l交抛物线C于A,B两不同点,交x轴的正半轴于点D.(1)当为正三角形时,求点A的横坐标;(2)若,直线,且和C相切于点E;①证明:直线过定点,并求出定点坐标;②的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.8.(2022·江苏南通·模拟预测)已知F1(-,0),F2(,0)为双曲线C的焦点,点P(2,-1)在C上.(1)求C的方程; (2)点A,B在C上,直线PA,PB与y轴分别相交于M,N两点,点Q在直线AB上,若+,=0,证明:存在定点T,使得|QT|为定值.9.(2022·河南·模拟预测(理))已知椭圆的离心率为,C的四个顶点围成的四边形面积为.(1)求C的方程;(2)已知点,若不过点Q的动直线l与C交于A,B两点,且,证明:l过定点.题型六:定值问题一、解答题1.(2022·江苏·南京师大附中模拟预测)如图,已知离心率为的椭圆的左右顶点分别为、,是椭圆上异于、的一点,直线、分别交直线于、两点.直线与轴交于点,且. (1)求椭圆的方程;(2)若线段的中点为,问在轴上是否存在定点,使得当直线、的斜率、存在时,为定值?若存在,求出点的坐标及的值;若不存在,请说明理由.2.(2022·辽宁沈阳·三模)如图,在平面直角坐标系中,分别为等轴双曲线的左、右焦点,若点A为双曲线右支上一点,且,直线交双曲线于B点,点D为线段的中点,延长AD,BD,分别与双曲线交于P,Q两点.(1)若,求证:;(2)若直线AB,PQ的斜率都存在,且依次设为,试判断是否为定值,如果是,请求出的值;如果不是,请说明理出. 3.(2022·安徽·合肥市第八中学模拟预测(理))已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)过点的直线与椭圆C相交于A,B两点,直线分别交x轴于M,N两点,点,若,求证:为定值.4.(2022·陕西·西北工业大学附属中学模拟预测(理))已知抛物线C:的焦点为,准线与坐标轴的交点为,、是离心率为的椭圆S的焦点.(1)求椭圆S的标准方程;(2)设过原点O的两条直线和,,与椭圆S交于A、B两点,与椭圆S交于M、N两点.求证:原点O到直线AM和到直线BN的距离相等且为定值.5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知椭圆C:经过点,且椭圆C的离心率. (1)求椭圆C的方程;(2)经过定点的直线l交椭圆C于A,B两点,椭圆C的右顶点为P,设直线PA,PB的斜率分别为,,求证:恒为定值.6.(2022·江苏·南京外国语学校模拟预测)在平面直角坐标系xOy中,设椭圆的两个焦点分别为F1,F2,点P在椭圆C上,连结PF1,PF2并延长,分别交椭圆于点A,B.已知APF2的周长为,F1PF2面积最大值为4.(1)求椭圆C的标准方程;(2)当P不是椭圆的顶点时,试分析直线OP和直线AB的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.7.(2022·湖北·荆州中学模拟预测)设点是椭圆上一动点,、分别是椭圆的左、右焦点,射线、分别交椭圆于两点,已知的周长为,且点在椭圆上.(1)求椭圆的方程; (2)证明:为定值.题型七:向量共线问题一、单选题1.(2022·贵州贵阳·二模(理))已知抛物线的准线交轴于点,过点作直线交于,两点,且,则直线的斜率是( )A.B.C.D.2.(2022·内蒙古赤峰·模拟预测(理))已知抛物线的焦点为,过点且倾斜角为的直线与抛物线交于(位于第一象限)、两点,直线与交于点,若,则( )A.B.C.D.二、多选题3.(2022·山东济南·二模)过抛物线焦点F的直线交抛物线于A,B两点(A在第一象限),M为线段AB的中点.M在抛物线的准线l上的射影为点N,则下列说法正确的是( )A.的最小值为4B.C.△NAB面积的最小值为6D.若直线AB的斜率为,则三、填空题4.(2022·贵州遵义·三模(理))斜率为的直线过椭圆的焦点,交椭圆于两点,若,则该椭圆的离心率为_________. 四、解答题5.(2022·江苏南京·模拟预测)已知圆:,动圆与圆外切,且与定直线相切,设动点的轨迹为.(1)求的方程;(2)若直线过点,且与交于,两点,与轴交于点,满足,(,),试探究与的关系.6.(2022·山东·烟台二中模拟预测)在平面直角坐标系xOy中,已知点,,设的内切圆与AC相切于点D,且,记动点C的轨迹为曲线T.(1)求T的方程;(2)设过点的直线l与T交于M,N两点,已知动点P满足,且,若,且动点Q在T上,求的最小值.7.(2022·山西太原·三模(理))已知椭圆过点离心率为(1)求椭圆C的方程;(2)当过点M(4,1)的动直线与椭圆C相交于不同的两点A,B时,在线段AB上取点N,满足求线段PN长的最小值. 8.(2022·天津红桥·二模)已知椭圆:()的离心率,点、之间的距离为.(1)求椭圆的标准方程;(2)若经过点且斜率为的直线与椭圆有两个不同的交点和,则是否存在常数,使得与共线?如果存在,求的值;如果不存在,请说明理由.9.(2022·山东济南·二模)已知椭圆C的焦点坐标为和,且椭圆经过点.(1)求椭圆C的方程;(2)若,椭圆C上四点M,N,P,Q满足,,求直线MN的斜率.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
重难点01七种零点问题(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点07五种数列求和方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点08 七种数列数学思想方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(解析版)
重难点08 七种数列数学思想方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点12五种椭圆解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(解析版)
重难点12五种椭圆解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点13六种双曲线解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(解析版)
重难点13六种双曲线解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点14三种抛物线解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)
重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(解析版)
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-09-28 08:33:02
页数:23
价格:¥3
大小:1.40 MB
文章作者:教学资源
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划