首页

重难点12五种椭圆解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)-(原卷版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

重难点12五种椭圆解题方法(核心考点讲与练)能力拓展题型一:利用椭圆定义解决三角形周长或边长问题一、单选题1.(2022·湖北·模拟预测)椭圆:有一特殊性质,从一个焦点射出的光线到达椭圆上的一点反射后,经过另一个焦点.已知椭圆的焦距为2,且,当时,椭圆的中心到与椭圆切于点的切线的距离为:(       )A.1B.C.D.或2.(2022·黑龙江·哈师大附中三模(文))已知点P为椭圆C:上一点,点,分别为椭圆C的左、右焦点,若,则的内切圆半径为(       )A.B.C.D.二、多选题3.(2022·全国·模拟预测)已知椭圆的焦点分别为,,焦距为2c,过的直线与椭圆C交于A,B两点.,,若的周长为20,则经过点的直线(       )A.与椭圆C可能相交B.与椭圆C可能相切C.与椭圆C可能相离D.与椭圆C不可能相切4.(2022·湖北·模拟预测)已知椭圆C的中心为坐标原点,焦点,在y轴上,短轴长等于,离心率为,过焦点为作轴的垂线交椭圆C于P,Q两点,则下列说法正确的是(       )A.椭圆C的方程为B.椭圆C的方程为C.D.的周长为5.(2022·山东菏泽·二模)已知椭圆的左右焦点分别为,,直线与椭圆E交于A,B两点,C,D分别为椭圆的左右顶点,则下列命题正确的有(       ) A.若直线CA的斜率为,BD的斜率,则B.存在唯一的实数m使得为等腰直角三角形C.取值范围为D.周长的最大值为6.(2022·山东德州·高三期末)已知椭圆的左、右焦点分别为,,过点的直线l交椭圆于A,B两点,若的最大值为5,则下列说法正确的是(       )A.椭圆的短轴长为B.当最大时,C.椭圆离心率为D.面积最大值为三、填空题7.(2022·广东佛山·三模)已知椭圆,、为的左、右焦点,是椭圆上的动点,则内切圆半径的最大值为________.8.(2022·陕西·长安一中三模(理))已知椭圆C:的焦点为,,第一象限点P在C上,且,则的内切圆半径为_________.四、解答题9.(2022·河南·西平县高级中学模拟预测(理))已知椭圆E:的离心率为,,为其左、右焦点,左、右顶点分别为A,B,过且斜率为k的直线l交椭圆E于M,N两点(异于A,B两点),且的周长为8.(1)求椭圆C的方程;(2)若P为椭圆上一点,O为坐标原点,,求的取值范围.10.(2022·福建南平·三模)已知椭圆:,,分别为椭圆的左、右焦点,焦距为4.过右焦点且与坐标轴不垂直的直线交椭圆于M,N两点,已知的周长为,点M关于 x轴的对称点为P,直线PN交x轴于点Q.(1)求椭圆的方程;(2)求四边形面积的最大值.11.(2022·天津三中二模)已知椭圆的左右焦点分别为,,其离心率,过左焦点的直线l与椭圆交于A,B两点,且的周长为8.(1)求椭圆C的标准方程;(2)如图过原点的直线与椭圆C交于E,F两点(点E在第一象限),过点E作x轴的垂线,垂足为点G,设直线与椭圆的另一个交点为H,连接得到直线,交x轴于点M,交y轴于点N,记、的面积分别为,,求的最小值.12.(2020·河南濮阳·一模(理))如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8. (Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.题型二:待定系数法求椭圆方程一、单选题1.(2022·河北唐山·三模)阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,两个焦点分别为,点P为椭圆C的上项点.直线与椭圆C交于A,B两点,若的斜率之积为,则椭圆C的长轴长为(       )A.3B.6C.D.2.(2022·全国·模拟预测)已知过椭圆的左焦点的直线与椭圆交于不同的两点,,与轴交于点,点,是线段的三等分点,则该椭圆的标准方程是(       )A.B.C.D.3.(2022·全国·高三专题练习)已知双曲线C的中心在坐标原点,焦点在x轴上,离心率等于,点在双曲线C上,椭圆E的焦点与双曲线C的焦点相同,斜率为的直线与椭圆E交于A、B两点.若线段AB的中点坐标为,则椭圆E的方程为(       ) A.B.C.D.二、多选题4.(2022·全国·模拟预测)已知直线x=my-1经过椭圆C:的一个焦点F,且与C交于不同的两点A,B,椭圆C的离心率为,则下列结论正确的有(       )A.椭圆C的短轴长为B.弦的最小值为3C.存在实数m,使得以AB为直径的圆恰好过点D.若,则5.(2022·全国·高三专题练习)已知O为坐标原点,椭圆的左、右焦点分别为F1、F2,长轴长为,焦距为2c,点P在椭圆C上且满足|OP|=|OF1|=|OF2|=c,直线PF2与椭圆C交于另一个点Q,若,点M在圆上,则下列说法正确的是(       )A.椭圆C的焦距为2B.三角形MF1F2面积的最大值为C.D.圆G在椭圆C的内部6.(2021·重庆·高三阶段练习)某文物考察队在挖掘时,挖出了一件宋代小文物,该文物外面是红色透明蓝田玉材质,里面是一个球形绿色水晶宝珠,其轴截面(如图)由半椭圆:与半椭圆:组成,其中,,设点,,是相应椭圆的焦点,,和,是轴截面与,轴交点,阴影部分是宝珠轴截面,其以曲线为边界,,在宝珠珠面上,若,则以下命题中正确的是(       ) A.椭圆的离心率是B.椭圆上的点到点的距离的最小值为C.椭圆的焦距为4D.椭圆的长短轴之比大于椭圆的长短轴之比三、解答题7.(2022·天津和平·三模)已知椭圆的离心率为,且椭圆过点.(1)求椭圆的标准方程;(2)过右焦点的直线与椭圆交于两点,线段的垂直平分线交直线于点,交直线于点,求的最小值.8.(2022·新疆乌鲁木齐·模拟预测(文))已知椭圆的焦距为,且过点.(1)求椭圆的方程;(2)设分别为椭圆的右顶点和上顶点,点是椭圆上在第一象限的任意一点,直线与轴交于点,直线与轴交于点,与的面积分别为,求的取值范围. 9.(2022·安徽·安庆一中高三阶段练习(理))已知是椭圆的左、右焦点,是的上顶点.到直线的距离为.(1)求的方程;(2)设直线与轴的交点为,过的两条直线都不垂直于轴,与交于点与交于点,直线与分别交于两点,求证:.10.(2022·辽宁葫芦岛·二模)已知椭圆C:的左右顶点分别为A,B,坐标原点O与A点关于直线l:对称,l与椭圆第二象限的交点为C,且.(1)求椭圆C的标准方程;(2)过A,O两点的圆Q与l交于M,N两点,直线BM,BN分别交椭圆C于异于B的E,F两点.求证:直线EF恒过定点.题型三:直接法解决离心率问题 一、单选题1.(2022·江苏苏州·模拟预测)已知是椭圆的左、右焦点,点是椭圆上的一个动点,若的内切圆半径的最大值是,则椭圆的离心率为(       )A.B.C.D.2.(2022·安徽·蚌埠二中模拟预测(理))一个底面半径为1,高为3的圆柱形容器内装有体积为的液体,当容器倾斜且其中液体体积不变时,液面与容器壁的截口曲线是椭圆,则该椭圆离心率的取值范围是(       )A.B.C.D.二、多选题3.(2022·全国·模拟预测)椭圆的左、右焦点分别为,,点P在椭圆C上,若方程所表示的直线恒过定点M,点Q在以点M为圆心,C的长轴长为直径的圆上,则下列说法正确的是(       )A.椭圆C的离心率为B.的最大值为4C.的面积可能为2D.的最小值为三、填空题4.(2022·浙江温州·三模)如图,椭圆和在相同的焦点,,离心率分别为,B为椭圆的上顶点,,且垂足P在椭圆上,则的最大值是___________. 5.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))如图,,是椭圆与双曲线的公共焦点,,分别是,在第二、四象限的公共点,若,且,则与的离心率之积为_____.四、解答题6.(2022·天津·南开中学模拟预测)已知椭圆的离心率为,斜率为且过点的直线与轴交于点(1)证明:直线与椭圆相切(2)记在(1)中的切点为,过点且与垂直的直线交轴于点,记的面积为的面积为,若,求椭圆的离心率7.(2022·安徽安庆·二模(理))已知曲线,其离心率为,焦点在x轴上.(1)求t的值;(2)若C与y轴交于A,B两点(点A位于点B的上方),直线y=kx+m与C交于不同的两点M,N,直线y=n与直线BM交于点G,求证:当mn=4时,A,G,N三点共线.题型四:构造齐次方程法求离心率的值或范围 一、单选题1.(2022·广东·模拟预测)已知,分别为椭圆的两个焦点,P是椭圆E上的点,,且,则椭圆E的离心率为(       )A.B.C.D.2.(2022·全国·模拟预测)已知椭圆的左、右焦点分别为,,过C的左焦点作一条直线与椭圆相交于A,B两点,若且,则C的离心率为(       )A.B.C.D.3.(2022·全国·模拟预测)过椭圆的左、右焦点,作倾斜角分别为和的两条直线,.若两条直线的交点P恰好在椭圆上,则椭圆的离心率为(       )A.B.C.D.4.(2022·江西·模拟预测(文))如图,椭圆的左、右焦点分别为,两平行直线分别过交M于A,B,C,D四点,且,则M的离心率为(       )A.B.C.D.5.(2022·辽宁·育明高中一模)国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A和短轴一端点分别向内层椭圆引切线,,且两切线斜率之积等于,则椭圆的离心率为(  ) A.B.C.D.二、填空题6.(2022·河南焦作·三模(文))已知椭圆的右焦点为F,直线与C交于A,B两点,若以为直径的圆经过点F,则C的离心率为___________.7.(2022·广东汕头·三模)已知正方形ABCD的四个顶点都在椭圆E:上,若正方形ABCD的一条边经过椭圆E的焦点F,则E的离心率是__________.8.(2022·江西·模拟预测(理))如图,椭圆M:的左、右焦点分别为,,两平行直线,分别过,交M于A,B、C,D四点,且,,则M的离心率为___.三、解答题9.(2022·辽宁·沈阳二中二模)已知椭圆的左、右焦点为,P为椭圆上一点,且,.(1)求椭圆的离心率;(2)已知直线交椭圆于两点,且线段的中点为,若椭圆上存在点,满足,试求椭圆的方程. 10.(2022·全国·高三专题练习)已知曲线C:,,分别为C的左、右焦点,过作直线l与C交于A,B两点,满足,且.设e为C的离心率.(1)求;(2)若,且,过点P(4,1)的直线与C交于E,F两点,上存在一点T使.求的轨迹方程.11.(2022·全国·高三专题练习)F1、F2是椭圆的左、右焦点,过点F2作直线交椭圆于两点,现将椭圆所在平面沿直线折成平面角为锐角的二面角,翻折后两点的对应点分别为,,且,(1)求椭圆的离心率;(2)设直线与椭圆在第一象限的交点为,为椭圆的上顶点,且直线与直线交于点,若,求的值.题型五:利用自变量范围求离心率范围 一、单选题1.(2022·黑龙江·双鸭山一中高三期末(理))已知椭圆的上焦点为,过原点的直线交于点,且,若,则的离心率的取值范围为(       )A.B.C.   D.2.(2022·安徽·合肥一中模拟预测(理))已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(       )A.B.C.D.3.(2022·全国·高三专题练习)已知椭圆的左右焦点为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆C的离心率的取值范围是(       )A.B.C.D.二、多选题4.(2022·江苏南通·高三期末)已知椭圆的焦点为、,点在椭圆的内部,点在椭圆上,则(       )A.B.椭圆的离心率的取值范围为C.存在点使得D.三、填空题5.(2022·浙江·高三专题练习)已知椭圆的右焦点为F,P、Q是椭圆上关于原点对称的两点,M、N分别是PF、QF的中点,若以MN为直径的圆过原点,则椭圆的离心率e的范围是___________.6.(2022·浙江·高三专题练习)已知F是椭圆的一个焦点,若直线与椭圆相交于A,B两点,且,记椭圆的离心率为e,则的取值范围是___________.7.(2021·全国·模拟预测)已知椭圆C:的左,右焦点分别为,,长轴长为4,点在椭圆内部,则椭圆C的离心率的取值范围是______. 8.(2022·全国·高三专题练习)已知椭圆的左、右焦点分别为,过原点的直线与C交于A,B两点(A在第一象限),若,且,则椭圆离心率的取值范围是___________.四、解答题9.(2022·全国·高三专题练习)已知椭圆:()的左、右两焦点分别为,,短轴的一个端点为,直线:交椭圆于,两点,.(1)若椭圆的离心率为,求椭圆的方程;(2)若点到直线的距离不小于,求椭圆的离心率的取值范围.10.(2022·全国·高三专题练习)已知椭圆:()的长半轴长为.(1)若椭圆经过点,求椭圆的方程;(2)为椭圆的右顶点,,椭圆上存在点,使得.求椭圆的离心率的取值范围.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-09-28 08:15:01 页数:15
价格:¥3 大小:1.21 MB
文章作者:教学资源

推荐特供

MORE