首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2024届高考数学一轮复习(新教材人教A版强基版)第一章集合、常用逻辑用语、不等式1.4基本不等式课件
2024届高考数学一轮复习(新教材人教A版强基版)第一章集合、常用逻辑用语、不等式1.4基本不等式课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/73
2
/73
3
/73
4
/73
剩余69页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
§1.4基本不等式第一章 集合、常用逻辑用语、不等式 1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用.考试要求 内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练 落实主干知识第一部分 (1)基本不等式成立的条件:.(2)等号成立的条件:当且仅当时,等号成立.(3)其中叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.a>0,b>0a=b 2.几个重要的不等式(1)a2+b2≥(a,b∈R).(2)≥(a,b同号).(3)ab≤(a,b∈R).(4)≥(a,b∈R).以上不等式等号成立的条件均为a=b.2ab2 3.利用基本不等式求最值(1)已知x,y都是正数,如果积xy等于定值P,那么当x=y时,和x+y有最小值.(2)已知x,y都是正数,如果和x+y等于定值S,那么当x=y时,积xy有最大值.注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”. 判断下列结论是否正确(请在括号中打“√”或“×”)(3)若x>0,y>0且x+y=xy,则xy的最小值为4.()××√× 1.若正实数a,b满足a+4b=ab,则ab的最小值为A.16B.8C.4D.2√因为正实数a,b满足a+4b=ab,所以ab≥16,当且仅当a=4b,即a=8,b=2时等号成立. 1 3.若把总长为20m的篱笆围成一个矩形场地,则矩形场地的最大面积是_____m2.25 设矩形的一边为xm,面积为ym2,其中0<x<10,当且仅当x=10-x,即x=5时,等号成立,∴ymax=25,即矩形场地的最大面积是25m2. 探究核心题型第二部分 命题点1配凑法题型一利用基本不等式求最值√ 由题意可知,x-2>0, 命题点2常数代换法√ 因为x>0,y>0,x+2y=1, 命题点3消元法例3(2023·烟台模拟)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为_____.6 方法一(换元消元法)即(x+3y)2+12(x+3y)-108≥0,令x+3y=t,则t>0且t2+12t-108≥0,得t≥6,即x+3y的最小值为6. 方法二(代入消元法)=12-6=6, 所以x+3y的最小值为6. 延伸探究本例条件不变,求xy的最大值.当且仅当x=3y,即x=3,y=1时取等号,∴xy的最大值为3. (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.思维升华 A.ab≤4B.a+b≥4C.2a+2b≤8D.log2a+log2b≥2√√ ∴ab≥4,当且仅当a=b=2时取等号,故A错误;∵log2a+log2b=log2ab≥log24=2,当且仅当a=b=2时取等号,故D正确. 令t=x-1,∴x=t+1,∵x>1,∴t>0, 例4(1)若0<a<b,则下列不等式一定成立的是题型二基本不等式的常见变形应用√ ∵0<a<b,∴2b>a+b, (2)(2023·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为√ 在Rt△OCF中,由勾股定理可得,∵CF≥OF, 基本不等式的常见变形 跟踪训练2(2022·漳州质检)已知a,b为互不相等的正实数,则下列四个式子中最大的是√ ∵a,b为互不相等的正实数, 例5中华人民共和国第十四届运动会在陕西省举办,某公益团队联系全运会组委会举办一场纪念品展销会,并将所获利润全部用于社区体育设施建设.据市场调查,当每套纪念品(一个会徽和一个吉祥物)售价定为x元时,销售量可达到(15-0.1x)万套.为配合这个活动,生产纪念品的厂家将每套纪念品的供货价格分为固定价格和浮动价格两部分,其中固定价格为50元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.约定不计其他成本,即销售每套纪念品的利润=售价-供货价格.(1)每套会徽及吉祥物售价为100元时,能获得的总利润是多少万元?题型三基本不等式的实际应用 每套会徽及吉祥物售价为100元时,销售量为15-0.1×100=5(万套),总利润为5×(100-52)=240(万元). (2)每套会徽及吉祥物售价为多少元时,单套的利润最大?最大值是多少元? 因为15-0.1x>0,所以0<x<150. 当且仅当150-x=10,即x=140时取等号,所以每套会徽及吉祥物售价为140元时,单套的利润最大,最大值是80元. 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值. 跟踪训练3某公益广告公司拟在一张矩形海报纸(记为矩形ABCD,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为1440cm2.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为2cm.当直角梯形的高为_______cm时,用纸量最少(即矩形ABCD的面积最小). 设直角梯形的高为xcm,∵宣传栏(图中阴影部分)的面积之和为1440cm2,且海报上所有水平方向和竖直方向的留空宽度均为2cm, 课时精练第三部分 基础保分练1234567891011121314√ 又x2≠-1,故B错误;即x=0时取等号,故C正确;1234567891011121314 1234567891011121314即sinx=1时取等号,因为sinx∈(0,1),故D错误. 2.已知a>0,b>0,a+b=2,则lga+lgb的最大值为1234567891011121314√∵a>0,b>0,a+b=2,当且仅当a=b=1时,取等号.∴lga+lgb的最大值为0. 3.(2021·新高考全国Ⅰ)已知F1,F2是椭圆C:=1的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为A.13B.12C.9D.6√当且仅当|MF1|=|MF2|=3时等号成立.所以|MF1|·|MF2|的最大值为9.1234567891011121314 1234567891011121314√ 因为a+b=3,1234567891011121314 1234567891011121314√√√ 12345678910111213146.(多选)(2023·黄冈模拟)若a>0,b>0,且a+b=4,则下列不等式恒成立的是√√ 当且仅当a=b=2时等号成立,则log2a+log2b=log2ab≤log24=2,当且仅当a=b=2时等号成立,故A,C不恒成立,D恒成立;1234567891011121314 1234567891011121314当且仅当a=b=2时等号成立,故B恒成立. 0当且仅当x=0时,等号成立.1234567891011121314 12345678910111213146 1234567891011121314 1234567891011121314 1234567891011121314因为0<x<2,所以4-x2>0, 10.某企业为了进一步增加市场竞争力,计划利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本300万元,每生产x(千部)手机,需另投入成本R(x)万元,且R(x)=通过市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求出今年的利润W(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本);1234567891011121314 1234567891011121314当0<x<40时,W(x)=700x-(10x2+100x)-300=-10x2+600x-300, 1234567891011121314(2)今年产量为多少(千部)时,企业所获利润最大?最大利润是多少? 若0<x<40,W(x)=-10(x-30)2+8700,当x=30时,W(x)max=8700(万元).∴W(x)max=8950(万元).∴今年产量为100千部时,企业所获利润最大,最大利润是8950万元.1234567891011121314 11.(2023·湘潭模拟)已知α,β为锐角,且tanα-tanβ+2tanαtan2β=0,则tanα的最大值为1234567891011121314综合提升练√ 1234567891011121314因为β为锐角,所以tanβ>0, 12.(2022·百师联盟联考)已知a>0,b>0,且a+2b=2ab,则ab的最小值为____,2a+b的最小值为_____.12345678910111213142 ∵a+2b=2ab,当且仅当a=2b,即b=1,a=2时,等号成立,故ab的最小值为2.∵a+2b=2ab,1234567891011121314 1234567891011121314 13.《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB为直径作半圆,过点C作AB的垂线交半圆于D,连接OD,AD,BD,过点C作OD的垂线,垂足为E,则该图形可以完成的无字证明为拓展冲刺练√1234567891011121314 根据图形,利用射影定理得CD2=DE·OD,1234567891011121314 14.(2023·潍坊模拟)已知正实数a,b满足a2+2ab+4b2=6,则a+2b的最大值为1234567891011121314√ ∵a2+2ab+4b2=6,∴(a+2b)2=a2+4ab+4b2=6+2ab,且6-2ab=a2+4b2≥4ab,∴ab≤1,∴(a+2b)2=6+2ab≤6+2=8,1234567891011121314
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022新高考数学人教A版一轮总复习训练模块卷(二)集合、常用逻辑用语、函数、导数、不等式(带解析)
2022新高考数学人教A版一轮总复习训练模块卷(一)集合、常用逻辑用语、函数、导数、不等式(带解析)
2022年高考数学一轮复习第一章集合与常用逻辑用语2不等关系及简单不等式的解法课件(新人教A版理)
2022年高考数学一轮复习第一章集合与常用逻辑用语2不等关系及简单不等式的解法课件(新人教A版文)
2022年高考数学一轮复习第1章集合与常用逻辑用语2不等关系及简单不等式的解法课件(人教A版)
2023届人教A版新高考数学新教材一轮复习第一章集合与常用逻辑用语课时规范练2常用逻辑用语(Word版带解析)
2023届人教A版新高考数学新教材一轮复习单元质检卷一集合、常用逻辑用语与不等式(Word版带解析)
2024届高考数学一轮复习(新教材人教A版强基版)第一章集合、常用逻辑用语、不等式1.1集合课件
2024届高考数学一轮复习(新教材人教A版强基版)第一章集合、常用逻辑用语、不等式1.2常用逻辑用语课件
2024届高考数学一轮复习(新教材人教A版强基版)第一章集合、常用逻辑用语、不等式1.3等式性质与不等式性质课件
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-09-12 23:50:02
页数:73
价格:¥2
大小:2.95 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划