首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
新高考数学题型全归纳之排列组合新高考数学题型全归纳之排列组合专题01 两个计数原理(解析版)
新高考数学题型全归纳之排列组合新高考数学题型全归纳之排列组合专题01 两个计数原理(解析版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题1两个计数原理类型一、加法原理【例1】高二年级一班有女生人,男生人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种.【解析】.【例2】若、是正整数,且,则以为坐标的点共有多少个?【解析】.【例3】用到这个数字,可以组成没有重复数字的三位偶数的个数为()A.B.C.D.【解析】由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有当尾数为0时,百位有9种选法,十位有8种结果,共有根据分类计数原理知共有故选:.【例4】用数字组成的无重复数字的四位偶数的个数为()A.B.C.D.【解析】由题意知本题需要分步计数,2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,根据由分步计数原理得到符合题意的偶数共有(个.故选:.【例5】用这个数字,可以组成____个大于,小于的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有个;②千位数字为5时,百位数字为0,1,2,3之一时,有个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有个;最后还有5420也满足题意.所以,所求四位数共有个.故答案为.类型二、乘法原理8 【例6】公园有个门,从一个门进,一个门出,共有_____种不同的走法.【解析】根据题意,要求从从任一门进,从任一门出,则进门的方法有4种,出门的方法也有4种,则不同的走法有种【例7】将个不同的小球放入个盒子中,则不同放法种数有_______.【解析】根据题意,依次对3个小球进行讨论:第一个小球可以放入任意一个盒子,即有4种不同的放法,同理第二个小球也有4种不同的放法,第三个小球也有4种不同的放法,即每个小球都有4种可能的放法,根据分步计数原理知共有即不同的放法,故答案为:64.【例8】如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有种.【解析】分两步完成,第一步先安排甲学校参观,共六种安排方法;第二步安排另外两所学校,共有安排方法,故不同的安排种法有,故答案为120.【例9】高二年级一班有女生人,男生人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【解析】【例10】六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【解析】每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有不同的报名方法种.【例11】六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种?【解析】由题意,每项比赛的冠军都有种可能,因为有3项体育比赛,所以冠军获奖者共有种可能【例12】用,,,,,组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且和相邻,这样的六位数的个数是__________(用数字作答).【解析】解析:可分三步来做这件事:第一步:先将3、5排列,共有种排法;8 第二步:再将4、6插空排列,插空时要满足奇偶性不同的要求,共有种排法;第三步:将1、2放到3、5、4、6形成的空中,共有种排法.由分步乘法计数原理得共有(种.答案为:40【例13】从集合中任选两个元素作为椭圆方程中的和,则能组成落在矩形区域且内的椭圆个数为( )A.B.C.D.【解析】椭圆落在矩形内,满足题意必须有,,所以有两类,一类是,从,2,3,,7,任选两个不同数字,方法有令一类是从9,10,两个数字中选一个,从,2,3,,7,中选一个方法是:所以满足题意的椭圆个数是:故选:.【例14】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为,值域为的“同族函数”共有()A.个B.个C.个D.个【解析】定义域是集合的子集,且子集中至少应该含有、1中的一个和、3中的一个,满足条件的定义有:,、,、,、,、,1,、,1,、,,、,,、,1,,,共9个.故选:.【例15】某银行储蓄卡的密码是一个位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如)的方法设计密码,当积为一位数时,十位上数字选,并且千位、百位上都能取.这样设计出来的密码共有()A.个B.个C.个D.个【例16】从集合中,选出个数组成子集,使得这个数中的任何两个数之和不等于,则取出这样的子集的个数为()A.B.C.D.【解析】从集合,,,,0,1,2,3,4,中,随机选出5个数组成子集,共有种取法,即可组成个子集,8 记“这5个数中的任何两个数之和不等于1”为事件,而两数之和为1的数组分别为,,,,,,包含的结果有①只有有一组数的和为1,有种结果②有两组数之和为1,有种,则包含的结果共有种故答案为:.【例17】若、是整数,且,,则以为坐标的不同的点共有多少个?【解析】整数,满足,则,,,0,1,2,,,,,,0,1,2,3,,从种选一个共有种方法,从选一个共有种方法,故有种.故答案为:.【例18】用,,,,,这个数字:⑴可以组成______________个数字不重复的三位数.⑵可以组成______________个数字允许重复的三位数.【解析】(1)根据题意,分2步分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种方法,②、在剩下的5个数字中任选2个,安排在十位、个位,有种选法,则可以组成个无重复数字的三位数(2)分3步进行分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种选法,②、再选十位,十位可以在0、1、2、3、4、5中任选1个,则十位有6种选法,③、最后分析个位,个位可以在0、1、2、3、4、5中任选1个,则个位有6种选法,则可以组成个数字允许重复的三位数;【例19】六名同学报名参加三项体育比赛,共有多少种不同的报名结果?【解析】【例20】将名教师分配到所中学任教,每所中学至少一名教师,则不同的分配方案共有()种.A.B.C.D.8 【解析】将名教师分配到所中学任教,每所中学至少1名教师,只有一种结果1,2,首先从个人中选个作为一个元素,使它与其他两个元素在一起进行排列,共有种结果,故选:.类型三、基本计数原理的综合应用【例21】用,,,,排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答)【解析】按首位数字的奇偶性分两类:一类是首位是奇数的,有:;另一类是首位是偶数,有:则这样的五位数的个数是:.故答案为:.【例22】若自然数使得作竖式加法均不产生进位现象.则称为“可连数”.例如:是“可连数”,因不产生进位现象;不是“可连数”,因产生进位现象.那么,小于的“可连数”的个数为()A.B.C.D.【解析】如果是良数,则的个位数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为,而小于1000的数至多三位,一位的良数有0,1,2,共3个二位的良数个位可取0,1,2,十位可取1,2,3,共有个三位的良数个位可取0,1,2,十位可取0,1,2,3,百位可取1,2,3,共有个.综上,小于1000的“良数”的个数为个故选:.【例23】由正方体的8个顶点可确定多少个不同的平面?【解析】依题意,正方体的8个顶点所确定的平面有:6个表面,6个对角面,8个正三角形平面共个.故答案为:【例24】分母是385的最简真分数一共有多少个?并求它们的和.8 【解析】因为,在这385个自然数中,5的倍数有(个,7的倍数有(个,11的倍数有(个,的倍数有(个,的倍数有(个,的倍数有(个,385的倍数有1个.由容斥原理知,在中能被5、7或11整除的数有(个,而5、7、11互质的数有(个.即分母为385的真分数有240(个.如果有一个真分数为,则必还有另一个真分数,即以385为分母的最简真分数是成对出现的,而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为.【例25】用,,,,,这个数字,可以组成_______个大于,小于的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有个;②千位数字为5时,百位数字为0,1,2,3之一时,有个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有个;最后还有5420也满足题意.所以,所求四位数共有个.故答案为.【例26】某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“”到“”共个号码.公司规定:凡卡号的后四位带有数字“”或“”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )A.B.C.D.【解析】个号码中不含4、7的有,“优惠卡”的个数为,故选:.【例27】同室人各写张贺年卡,先集中起来,然后每人从中各拿张别人送出的贺年卡,则张贺年卡不同的分配方式有( )A. B.种 C.种 D.种【解析】设四人分别为、、、,写的卡片分别为、、、,由于每个人都要拿别人写的,即不能拿自己写的,故有三种拿法,不妨设拿了,则可以拿剩下三张中的任一张,也有三种拿法,和只能有一种拿法,所以共有种分配方式,8 故选:.【例28】某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A.B.C.D.【解析】由题意知将这3个节目插入节目单中,原来的节目顺序不变,三个新节目一个一个插入节目单中,原来的6个节目形成7个空,在这7个位置上插入第一个节目,共有7种结果,原来的6个和刚插入的一个,形成8个空,有8种结果,同理最后一个节目有9种结果根据分步计数原理得到共有插法种数为,故选:.【例29】某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共()A.15种B.12种C.9种D.6种【解析】同种树苗不相邻且第一个树坑和第5个树坑只能种甲种树苗,只有中间三个坑需要选择树苗,当中间一个种甲时,第二和第四个坑都有2种选法,共有4种结果,当中间一个不种甲时,则中间一个种乙或丙,当中间这个种乙时,第二和第四个位置树苗确定,当中间一个种丙时,第二和第四个位置树苗确定,共有2种结果,总上可知共有种结果,故选:.【例30】用到这个数字,可以组成没有重复数字的三位偶数的个数为()A.B.C.D.【解析】由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有当尾数为0时,百位有9种选法,十位有8种结果,共有根据分类计数原理知共有故选:.8 【例31】足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有()A.种B.种C.种D.种【解析】得3分最多6场,则1分的1场,剩余的场次均得0分;若3分的共5场,则1分的共4场;若3分的共4场,则1分的共7场;若得3分的共3场,则1分的共9场;若得3分的2场,则1分的13场,不合题意,故选B.8
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【备战2023】高考数学 6年高考母题精解精析 专题11 排列组合、二项式定理01 理
(新课标)2022年高考数学 题型全归纳 解三角形考点归纳
(新课标)2022年高考数学 题型全归纳 正弦定理知识归纳典型例题
(新课标)2022年高考数学 题型全归纳 数列高考要求
(新课标)2022年高考数学 题型全归纳 数列要点讲解
(新课标)2022年高考数学 题型全归纳 数列复习指导
(新课标)2022年高考数学 题型全归纳 应用举例例题解析
【备考2022】2022高考数学 (真题+模拟新题分类汇编) 计数原理 理
【备考2022】2022高考数学 (真题+模拟新题分类汇编) 计数原理 文
高考语文复习专题之成语新题型15道含答案
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2023-08-25 06:15:01
页数:8
价格:¥6
大小:545.01 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划