(新课标)2022年高考数学 题型全归纳 数列要点讲解
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
数列一、高考要求理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式.并能运用这些知识来解决一些实际问题.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法.二、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如,可以利用等比数列的性质进行转化:从而有,即.4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练 数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。6.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质.通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降.三、复习建议对基础知识要落实到位,主要是等差(比)数列的定义、通项、前n项和.注意等差(比)数列性质的灵活运用.掌握一些递推问题的解法和几类典型数列前n项和的求和方法.注意渗透三种数学思想:函数与方程的思想、化归转化思想及分类讨论思想.注意数列知识在实际问题中的应用,特别是在利率,分期付款等问题中的应用.-4-\n数列是高中数学的重要内容之一,也是高考考查的重点。而且往往还以解答题的形式出现,所以我们在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。四、典型例题已知由正数组成的等比数列,若前项之和等于它前项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列的通项公式.解:∵q=1时,又显然,q≠1∴依题意;解之又,依题意,将代入得等差数列{an}中,=30,=15,求使an≤0的最小自然数n。解:设公差为d,则或或或解得:Þa33=30与已知矛盾或Þa33=-15与已知矛盾或Þa33=15或Þa33=-30与已知矛盾∴an=31+(n-1)()Þ310Þn≥63∴满足条件的最小自然数为63。设等差数列{a}的前n项和为S,已知S4=44,S7=35(1)求数列{a}的通项公式与前n项和公式;(2)求数列的前n项和Tn。-4-\n解:(1)设数列的公差为d,由已知S4=44,S7=35可得a1=17,d=-4∴a=-4n+21(n∈N),S=-2n+19(n∈N).(2)由a=-4n+21≥0得n≤,故当n≤5时,a≥0,当n≥6时,当n≤5时,T=S=-2n+19n当n≥6时,T=2S5-S=2n-19n+90.已知等差数列的第2项是8,前10项和是185,从数列中依次取出第2项,第4项,第8项,……,第项,依次排列一个新数列,求数列的通项公式及前n项和公式。解:由得∴∴已知数列1,1,2……它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到。求该数列的前n项和Sn;解:(1)记数列1,1,2……为{An},其中等比数列为{an},公比为q;等差数列为{bn},公差为d,则An=an+bn(n∈N)依题意,b1=0,∴A1=a1+b1=a1=1①A=a+b=aq+b+d=1②A=a+b=aq2+b+2d=2③由①②③得d=-1,q=2,∴∴已知数列满足an+Sn=n,(1)求a1,a2,a3,由此猜想通项an,并加以证明。解法1:由an+Sn=n,当n=1时,a1=S1,\a1+a1=1,得a1=当n=2时,a1+a2=S2,由a2+S2=2,得a1+2a2=2,\a2=-4-\n当n=3时,a1+a2+a3=S3,由a3+S3=3,得a1+a2+2a3=3\a3=猜想,(1)下面用数学归纳法证明猜想成立。当n=1时,a1=1-,(1)式成立假设,当n=k时,(1)式成立,即ak=1-成立,则当n=k+1时,ak+1+Sk+1=k+1,Sk+1=Sk+ak+1\2ak+1=k+1-Sk又ak=k+Sk\2ak+1=1+ak\ak+1=即当n=k+1时,猜想(1)也成立。所以对于任意自然数n,都成立。解法2:由an+Sn=n得,两式相减得:,即,即,下略-4-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)