首页

第17章函数及其图象17.4反比例函数2反比例函数的图象和性质第2课时反比例函数的图象和性质2教案(华东师大版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

第17章函数及其图象2.反比例函数的图象和性质第2课时反比例函数的图象和性质(2)【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析,交流的过程,逐步提高运用知识的能力【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质一、情境导入,初步认识1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知已知正比例函数y=ax和反比例函数y=的图象相交于点(1,2),求两函数解析式.分析:根据题意可作出图象.点(1,2)在正比例函数和反比例函数图象上,把点(1,2)代入正比例函数和反比例函数的解析式中,求出a和b.解:7 因为点(1,2)在正比例函数和反比例函数图象上,把x=1,y=2分别代入y=ax和y=b/x中,得2=a,2=b/1,b=2.所以正比例函数解析式为y=2x.反比例函数解析式为y=2/x.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.三、运用新知,深化理解1.已知如图,A是反比例函数y=k/x的图象上的一点,AB丄x轴于点B,且△ABC的面积是3,则k的值是()A.3B.-3C.6D.-6解析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=1/2|k|.具体解答如下:根据题意可知:S△AOB=1/2|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.答案:C.2.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()7 A.B.2C.3D.1解析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.具体解答过程如下:如图,分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC-S△AOE-S△BOC=6-3-32=32.答案:A.3.已知直线y=x+b经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C,求k、b的值.解:点A(3,0)在直线y=x+b上,所以0=3+b,b=-3.一次函数的解析式为:y=x-3.又因为点B(-2,m)也在直线y=x-3上,所以m=-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k=-2×(-5)=10.7 4.已知反比例函数y=k1/x的图象与一次函数y=k2x-1的图象交于A(2,1).(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值.(2)把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式中,可知A′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k2-1,k2=1.所以反比例函数的解析式为:y=2/x;一次函数解析式为:y=x-1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y==-1,所以点A′在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y==-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.解:(1)反比例函数的图象过点B(a,-3a),-3a=,a=±1,因为a<0,所以a=-1.B(-1,3).7 即:一次函数的解析式为y=-2x+1.(2)由(1)知一次函数解析式为y=-2x+1一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.7 分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.解:(1)观察图象可知,反比例函数y=的图象过点A(-2,1),m=-2×1=-2.所以反比例函数的解析式为:y=.又点B(1,a)也在反比例函数图象上,a==-2.即B(1,-2).一次函数解析式为:y=-x-1.(2)观察图象可知,当x<-2或0<x<1时,一次函数的值大于反比例函数值四、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?如图,点P是直线y=x+2与双曲线y=在第一象限内的一个交点,直线y=x+2与x轴、y轴的交点分别为A、C,过P作PB垂直于x轴于B,若AB+PB=9.(1)求k的值;(2)求△PBC的面积.7 通过本节课的学习,发现了一些问题,因此必须强调:1.综合运用一次函数和反比例函数求解两种函数解析式,往往仍用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-24 08:21:01 页数:7
价格:¥1 大小:229.50 KB
文章作者:随遇而安

推荐特供

MORE