首页

第16章二次根式16.2二次根式的运算1二次根式的乘除第2课时二次根式的除法教案(沪科版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第2课时二次根式的除法【知识与技能】1.理解(a≥0,b>0)和(a≥0,b>0)及利用它们进行运算.2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.【情感态度】通过本节的学习培养学生准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.【教学重点】理解(a≥0,b>0),(a≥0,b>0)及利用它们进行计算和化简.【教学难点】发现规律,归纳出二次根式的除法法则和对最简二次根式的理解.一、复习提问,导入新课请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空6 3.通过以上计算,你能得出什么规律?【教学说明】通过具体的计算,让学生感知二次根式除法法则的具体来源,然后让学生总结发现的规律.二、合作探究,探索新知1.教师引导学生总结:一般地,对二次根式的除法规定:(a≥0,b>0),反过来,(a≥0,b>0)【教学说明】教师及时总结二次根式除法的法则,并引导学生对法则进行逆向应用,加深对法则的理解.2.请同学们完成下列各题3.观察上面计算题的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.小结:我们把满足上述两个条件的二次根式,叫做最简二次根式.【教学说明】6 先让学生进行化简计算,然后再让学生观察计算的结果.这里,学生可能说的不是很完整,教师及时予以补充,最后教师再将探究的结果进行归纳总结,学生做好笔记,形成概念.三、示例讲解,掌握新知【教学说明】例1是对具体的数进行计算,可以让学生先自主完成,然后教师再针对发现的问题进行讲解.例2化简:【分析】直接利用(a≥0,b>0)就可以达到化简的目的.6 【教学说明】例2涉及到含有字母的式子进行化简,对于学生来说有一定的难度,教师可以先示范讲解(1)和(2),适当总结应该注意的问题,然后让学生自主完成(3)(4),最后再进行强调,加深学生的印象,提高学生对法则应用的熟练性.四、练习反馈,巩固提高1.如果(y>0)是二次根式,那么,化为最简二次根式是().2.把中根号外的(a-1)移入根号内得().6 【教学说明】让学生独立完成,对于第2、5、6题,学生理解有一定的困难,教师可以适当引导学生考虑a的取值范围,再进行化简.五、师生互动,课堂小结1.(a≥0,b>0)和(a≥0,b>0)及其运用.2.最简二次根式有何特征?被开方数不含分母;被开方数中不含能开得尽方的因数或因式.6 完成同步练习册中本课时的练习.本节内容是在前一节二次根式的学习基础上,在熟练计算积的算术平方根的情况下,学习商的算术平方根的性质,同时为分母有理化作准备.所以在教学中更应注重积和商的互相转换,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质在此,过程中给予适当的指导,提出问题让学生有一定的探索方向.要注意二次根式乘除法的计算公式的逆用.乘法公式的逆用就是用来使“被开方数中不含能开的尽方的因数或因式”,除法公式的逆用就是用来使“被开方数不含分母”,从而保证了结果是最简二次根式.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-21 19:15:01 页数:6
价格:¥1 大小:468.00 KB
文章作者:随遇而安

推荐特供

MORE