首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
上海市复兴高级中学2021-2022学年高一数学下学期期末线上自测试题(Word版附解析)
上海市复兴高级中学2021-2022学年高一数学下学期期末线上自测试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
上海市复兴高级中学2021学年第二学期期末线上自测高一年级数学试卷一、填空题(每题8分,共80分)1.已知向量,,,______.【答案】【解析】【分析】由两个向量垂直坐标运算进行计算即可.【详解】因为,所以,所以,解得.故答案为:2.已知复平面上有点A和点B,向量与向量所对应复数分别为与,则点B的坐标为____________.【答案】【解析】【分析】根据向量的线性运算结合复数的几何意义即可求解.【详解】解:因为,所以点B坐标为.故答案为:.3.已知,,,则点的坐标为____________.【答案】【解析】【分析】利用平面向量线性运算的坐标表示即可求解.【详解】解:设,因为,,所以,又,所以,解得,故点的坐标为.故答案为:. 4.已知等比数列,首项,公比为,前项和为;则____________.【答案】【解析】【分析】根据等比数列求和公式直接计算即可.【详解】由已知得,故答案为:.5.,若,则____________.【答案】【解析】【分析】根据共轭复数的定义及性质结合复数模的定义即可求解.【详解】解:因,所以,则,故所以.故答案为:.6.计算的结果是________.【答案】【解析】【分析】把化为三角形式,然后模相除,辐角相减得商的模和辐角,再化为代数形式. 【详解】解析1:.解析2:原式.【点睛】本题考查复数的除法,解题时把所有复数化为三角形式,然后模相除,辐角相减得商的模和辐角,再化为代数形式即可.当然也可以化为代数形式计算.7.已知向量、满足,,且,则向量在上的投影为____________.【答案】【解析】【分析】根据题意可求出向量、的夹角,再根据向量在上的投影为即可得解.【详解】解:因为,,且,所以,所以,所以向量在上的投影为.故答案为:.8.已知数列中,,,则通项公式____________.【答案】【解析】 【分析】根据题意可得数列是等比数列,从而可求出数列的通项,即可得出答案.【详解】解:因为,所以,因,所以,所以数列是以1为首项,为公比的等比数列,所以,所以.故答案为:.9.若lg2,lg(2x-1),lg(2x+3)成等差数列,则x的值是________.【答案】log25【解析】【分析】由题意得lg2+lg(2x+3)=2lg(2x﹣1),由对数的运算性质得lg[2•(2x+3)]=lg(2x﹣1)2,解可得2x的值,由指数的运算性质可得答案.【详解】若lg2,lg(2x﹣1),lg(2x+3)成等差数列,则lg2+lg(2x+3)=2lg(2x﹣1),由对数的运算性质可得lg[2•(2x+3)]=lg(2x﹣1)2,解得2x=5或2x=﹣1(不符合指数函数的性质,舍去)则x=log25故答案为log25【点睛】本题考查指数、对数的运算性质以及等差数列的性质,解题时注意结合指数函数的性质,否则容易产生增根.10.已知数列的前项和为,点在直线上.若,数列的前项和为,则满足的的最大值为________. 【答案】13【解析】【分析】由题设易得,即可求,进而得,讨论为奇数、偶数求,结合已知不等关系求的最大值即可.【详解】由题意知:,则,当时,;当时,;而,∴,,∴,∴,当为奇数时,,当为偶数时,,∴要使,即或,解得且.故答案为:13.【点睛】关键点点睛:由的关系求通项公式,讨论写出,进而由不等关系求的最大值.二、选择题(每题8分,共16分)11.已知,“”是“z为实数”的()条件A.充分非必要B.必要非充分C.充要D.既非充分也非必要【答案】C【解析】【分析】化简得到是实数,再利用充分条件必要条件的定义判断.【详解】设, 因为,所以,所以是实数;当是实数时,.所以“”是“z为实数”的充要条件.故选:C【点睛】方法点睛:充分条件必要条件的定义的判断常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件灵活选择方法求解.12.在直角中,是直角,CA=4,CB=3,的内切圆交CA,CB于点D,E,点P是图中阴影区域内的一点(不包含边界).若,则的值可以是()A.1B.2C.4D.8【答案】B【解析】【分析】先由内切圆性质求出半径,再利用坐标法得到的几何意义,最后利用线性规划方法数形结合可解.【详解】在中,CA=4,CB=3,则AB=5,设内切圆半径为r,且,则,以C为坐标原点建立如图所示的直角坐标系,则,. ,令,则点P在直线上(t为截距).又点P是图中阴影区域内的一点(不包含边界).即直线与阴影区域(不包含边界)有公共点.由图可知,当且时,才满足题意,所以排除选项ACD.故选:B.【点睛】解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义,依据可行域的情况数形结合决定参数取值.三、解答题(14+20+20=54分)13.已知、是两个单位向量.(1)若,试求的值;(2)若、的夹角为,试求向量与的夹角的余弦值.【答案】(1)(2)【解析】【分析】(1)平方后由数量积的运算律求解(2)由数量积的定义求解【小问1详解】,,是两个单位向量,,, ;.【小问2详解】,,,,,,,.14.设方程的两根为.(1)若,求的值;(2)若方程至少有一根的模为1,求的值.【答案】(1)(2)的值为-2,0,1【解析】【分析】(1)利用方程根与系数的关系得到,结合即可得出结论;(2)讨论两根为实数根和虚数根的情况分别求解的值.【小问1详解】解:因为方程的两根为,所以,,又,则,所以.故.【小问2详解】解:①若为实数根,则,即, 设,则,将代入方程得,即(满足),将代入方程得,即(满足);②若为共轭虚根,则,即,设,则,故(满足).综上,的值为-2,0,1.15.首项为的无穷等比数列所有项的和为1,为的前n项和,又,常数,数列满足.(1)求数列的通项公式;(2)求数列的通项公式;(3)若是严格减数列,求t的最小值.【答案】(1)(2)(3)的最小值为1【解析】【分析】(1)根据无穷等比数列所有项的和为1,求出公比,再根据等比数列的通项公式可得;(2)求出,代入可得;(3)求出,然后根据数列递减可得恒成立,由不等式恒成立可得答案.【小问1详解】 设无穷等比数列的公比为,则,所以,解得,所以.【小问2详解】因为,所以,所以,所以.【小问3详解】,,所以,因为是递减数列,所以恒成立,所以恒成立,所以恒成立,因为为递减函数,所以时,取得最大值,所以,又因为,所以的最小值为1.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
上海市虹口高级中学2021-2022学年高一语文下学期期中试题(Word版附解析)
上海市延安中学2021-2022学年高一语文下学期线上期中试题(Word版附解析)
上海市华东师大二附中2021-2022学年高一语文下学期线上期末试题(Word版附解析)
上海市金汇高级中学2021-2022学年高一语文下学期期末试题(Word版附解析)
上海市师大附属嘉定高级中学2021-2022学年高一语文下学期期末试题(Word版附解析)
上海市向明中学2021-2022学年高一语文下学期期末试题(Word版附解析)
上海市复兴高级中学2021-2022学年高一数学下学期期中试题(Word版附解析)
上海市曹杨中学2021-2022学年高一数学下学期期末试题(Word版附解析)
上海市崇明区2021-2022学年高一数学下学期期末试题(Word版附解析)
上海市川沙中学2021-2022学年高一数学下学期期末试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-04-14 06:24:01
页数:10
价格:¥2
大小:484.95 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划