首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高中
>
数学
>
湘教版
>
选修2-2
>
第6章 推理与证明
>
本章复习与测试
>
湘教版选修2-2课件第6章 章末复习 推理与证明
湘教版选修2-2课件第6章 章末复习 推理与证明
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/39
2
/39
3
/39
4
/39
剩余35页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第六章章末复习 1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性. 3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法. 4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立. 5.归纳、猜想、证明探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明. 题型一 归纳推理和类比推理归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证. 例1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199答案C 解析记an+bn=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123. 跟踪演练1自然数按下表的规律排列 则上起第2007行,左起第2008列的数为()A.20072B.20082C.2006×2007D.2007×2008答案D解析经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即第n行的第1个数为n2; ②第一行第n个数为(n-1)2+1;③第n行从第1个数至第n个数依次递减1;④第n列从第1个数至第n个数依次递增1.故上起第2007行,左起第2008列的数,应是第2008列的第2007个数,即为[(2008-1)2+1]+2006=2007×2008. 题型二 直接证明由近三年的高考题可以看出,直接证明的考查中,各种题型均有体现,尤其是解答题,几年来一直是考查证明方法的热点与重点. 综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用. 跟踪演练2如图,在四面体B-ACD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.证明(1)要证直线EF∥平面ACD,只需证EF∥AD且EF⊄平面ACD.因为E,F分别是AB,BD的中点,所以EF是△ABD的中位线,所以EF∥AD,所以直线EF∥平面ACD. 题型三 反证法如果一个命题的结论难以直接证明时,可以考虑反证法.通过反设已知条件,经过逻辑推理,得出矛盾,从而肯定原结论成立.反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常体现,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题. 例3如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB、DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线. 图(1) 图(2) (2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN,∵两正方形不共面,∴AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,∴AB∥EN.又AB∥CD∥EF,∴EN∥EF,这与EN∩EF=E矛盾,故假设不成立.∴ME与BN不共面,即它们是异面直线. ∵π-3>0,且(x-1)2+(y-1)2+(z-1)2≥0,∴a+b+c>0,这与a+b+c≤0矛盾,因此假设不成立,∴a,b,c中至少有一个大于0. 题型四 数学归纳法1.数学归纳法事实上是一种完全归纳的证明方法,它适用于与自然数有关的问题.两个步骤、一个结论缺一不可,否则结论不成立;在证明递推步骤时,必须使用归纳假设,必须进行恒等变换.2.探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题的结论,需要由特殊情况入手,猜想、证明一般结论,它的解题思路是:从给出条件出发,通过观察、试验、归纳、猜想、探索出结论,然后再对归纳,猜想的结论进行证明. 1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性. 3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法. 4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立. 再见
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
新人教A版选修2-2高中数学第2章推理与证明章末综合测评2(附解析)
新人教A版选修2-2高中数学第2章推理与证明专题强化训练2(附解析)
湘教版选修2-2当堂检测6.1.3 演绎推理 6.1.4 合情推理与演绎推理的关系
湘教版选修2-2第4章 章末检测 导数及其应用
湘教版选修2-2第5章 章末检测 数系的扩充与复数
湘教版选修2-2第6章 章末检测 推理与证明
湘教版选修2-2课件6.1.3 演绎推理 6.1.4 合情推理与演绎推理的关系
湘教版选修2-2课件6.2.2 间接证明:反证法
湘教版选修2-2课件第4章 章末复习 导数及其应用
湘教版选修2-2课件第5章 章末复习 数系的扩充与复数
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-03-24 21:25:02
页数:39
价格:¥3
大小:719.00 KB
文章作者:U-344380
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划