首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2023届高三数学一轮复习大题专练18导数最值问题
2023届高三数学一轮复习大题专练18导数最值问题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
一轮大题专练18—导数(最值问题)1.已知函数.(1)求曲线上一点处的切线方程;(2)当时,在区间,的最大值记为,最小值记为,设,求的最小值.解:(1)因为点在曲线上,所以,解得,所以,求导得,切点为,,故切线斜率,所求切线方程为.(2)因为,,,.所以.令,得或.所以,,为减函数;,,为增函数.①当时,在,上单调递减所以依题意,,,所以.②当时,在,上单调递减,在,上单调递增,又因为,,,当时,,所以,,当时,,所以,.设,所以,当时,,所以在单调递减.8 又因为,,所以所以,当且仅当时,取得最小值.2.已知函数,.(1)证明:有且仅有一个零点;(2)当,时,试判断函数是否有最小值?若有,设最小值为(a),求(a)的值域;若没有,请说明理由.(1)证明:因为,所以时,,函数无零点;又因为,所以,时,,单调递增,又(1),,,即(1),故存在唯一,使,综上可知,函数有且仅有一个零点.(2)解:,,,,,单调递增,又(1),,故存在唯一,使,即,,,单调递减;,,,单调递增,因此有最小值,8 (a),令,,,故单调递减,进而,(1),,即(a)的值域为,.3.已知函数,.(1)设,求的极值:(2)若函数有两个极值点,.求的最小值.解:(1),定义域是,,令,解得:或,令,解得:,故在递增,在,递减,在递增,故,(1);(2)函数,,,,是函数的极值点,,是方程的两不等正根,则△,,,故,,即,,,且,,,8 令,则,,,,当,上递减,当上递增,故(1),故的最小值为.4.已知函数,.(1)讨论的单调性;(2)当时,函数的最小值为(其中为的导函数),求的值.解:(1),当时,,在区间上单调递减,在上单调递增,当时,由,得,在区间,上单调递增,在,上单调递减,在区间上单调递增,当时,由,得,在上单调递增,当时,由,得,在区间上单调递增,在区间,上单调递减,在,上单调递增,综上:当时,在区间上单调递减,在上单调递增,当时,在区间,上单调递增,在,上单调递减,在区间上单调递增,当时,在上单调递增,当时,在区间上单调递增,在区间,上单调递减,在,上单调递增.8 (2)设,且,,设,,在上单调递减,在上单调递增,且当时,,又当时,,当时,,在上必存在唯一零点,使得,即在上,,单调递减,在,上,,单调递增,在处取得最小值,又,,则,设,,当时,,单调递增,故,此时,当时,,单调递减,故,又(1),故,故.5.已知函数,.(1)求的单调性;(2)若,且的最小值小于,求的取值范围.解:(1),,①当时,恒成立,在上单调递增,8 ②当时,令,则,令,则,在上单调递减,在上单调递增,综上:当时,在上单调递增,当时,在上单调递减,在上单调递增,(2)由(1)知,则,令,则,令,,在上单调递减,又,(1),存在,使得,即,在上单调递增,在,上单调递减,又,(2),(a).的取值范围为.6.已知函数,.(Ⅰ)设,若函数在区间,上是减函数,求实数的取值范围;(Ⅱ)若函数区间上的最小值为1,求实数的值.解:(Ⅰ),,,,在,上单调递减,当,时,恒成立,即,又,,,又,,时,取最小值,8 故的取值范围是,;(Ⅱ),,在递增,在递增,在上存在唯一零点,使得,故,在上单调递增,时,,递减,,时,,递增,,显然是方程的解,令是减函数,则,有且只有唯一的解,,,又,,.7.设函数.(1)若,求的极值;(2)若,且当时,函数的图象在直线的上方,求整数的最大值.解:(1),则,若,令,解得:,令,解得:,故在递减,在递增,故的极小值是,无极大值;8 (2)时,,,故,时函数的图象在直线的上方,问题转化为在恒成立,令,,,①即时,,在单调递增,故,符合题意;②即时,令,解得:,令,解得:,故在递减,在递增,故,由,令,则,则,令,,则,故在递减,而(1),(2),故整数的最大值是1,故的最大值是1,即整数的最大值是2.8
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023届高三数学一轮复习大题专练01导数恒成立问题1
2023届高三数学一轮复习大题专练02导数恒成立问题2
2023届高三数学一轮复习大题专练03导数极值极值点问题1
2023届高三数学一轮复习大题专练07导数构造函数证明不等式1
2023届高三数学一轮复习大题专练08导数构造函数证明不等式2
2023届高三数学一轮复习大题专练09导数双变量与极值点偏移问题1
2023届高三数学一轮复习大题专练10导数双变量与极值点偏移问题2
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-02-25 07:55:02
页数:8
价格:¥2
大小:485.00 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划