首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2023届高三数学一轮复习大题专练08导数构造函数证明不等式2
2023届高三数学一轮复习大题专练08导数构造函数证明不等式2
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
一轮大题专练8—导数(构造函数证明不等式2)1.已知函数.(1)讨论函数的单调性;(2)证明:当时,.解:(1)函数的定义域为,,令,当时,,此时在上单调递减;当时,为二次函数,△,①若△,即时,的图象为开口向下的抛物线且,则,此时在上5单调递减;②当△,即或时,令,解得,当时,的图象为开口向下的抛物线,,当,,时,,则,单调递减,当,时,,则,单调递增;当时,的图象为开口向上的抛物线,,当,,则,单调递减,当,,,则,单调递增;综上,当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;-8- 当时,在上单调递减.(2)证明:由(1)知,当时,在上单调递减,在上单调递增,因此对任意恒有(1),即,又,要证,只需证,令,则,,,,则在,上单调递增,又(1),当时,恒成立,则在,上单调递增,又(1),对任意恒有(1),即,即得证.2.已知函数.(1)求在处的切线方程;(2)已知关于的方程有两个实根,,当时,求证:.解:(1),,,故时的切线方程是,即;(2)证明:由(1)知:在递减,在递增,,,当时,方程有2个实根,,则,,令,则,-8- 令,则,故在递增,故,故在递增,故,故,故,故,故时,,故,故.3.已知函数与.是自然对数的底数,(1)讨论关于的方程根的个数;(2)当,时,证明:.解:(1)令,,,当时,不满足当时,,,,,因此在区间上单调递增,(1),在区间上单调递减,,,根据零点定理,在上存在唯一零点.当,,,,,,,在上单调递增,(1),(e),根据零点定理,在上存在唯一零点,-8- 因此,根的个数为2个.(2)设,,,在,上单调递减,在,上单调递减,,所以,,要证明,仅需要证明,设,,当,,在该区间上单调递增,所以,,所以,,综上所述,当,时,.4.已知.(1)求的单调区间;(2),若有两个零点,,且.求证:.(左边和右边两个不等式可只选一个证即可)解:(1),当时,,在单调递增;当时,令,解得,令,解得,在单调递增,在单调递减;综上,当时,的单调递增区间为;当时,的单调递增区间为-8- ,单调递减区间为;(2)证明:,令,则,设,则,易知函数在单调递减,在单调递增,且时,,当时,,(1),,又,则,①若证所证不等式的左边,即,即证,又(b),则,故即证,即证,设(b),,则,(b)在上单调递减,(b)(1),即得证;②若证所证不等式的右边,即,即证,即证,又(a),即,故即证,即证,设(a),,则,(a)在单调递减,故(a)(1),即得证.5.已知函数,且函数与有相同的极值点.(1)求实数的值;(2)若对,不等式恒成立,求实数的取值范围;(3)求证:.-8- 解:(1)令,解得,易知函数在单调递增,在单调递减,故函数的极大值点为,令,则由题意有,(1),解得,经验证符合题意,故实数的值为1;(2)由(1)知,函数在单调递增,在单调递减,又,且,当时,(1),(3),①当,即时,对,不等式恒成立,即为恒成立,则,,又,此时的取值范围为;②当,即时,对,不等式恒成立,即为恒成立,则,,又,此时的取值范围为,综上,实数的取值范围为,,;(3)证明:所证不等式即为,下证:,即证,设,则,,易知函数在上单调递减,且,-8- 故存在唯一的,使得,即,,且当时,,单调递增,当,时,,单调递减,,在单调递减,又时,,故,即;再证:,即证在上恒成立,设,,在单调递增,则,故,综上,,即得证.6.已知函数.(1)讨论的极值情况;(2)若时,,求证:.解:(1)的定义域是,,①时,,在上单调递增,无极值,②时,令,解得:,令,解得:,故在递减,在递增,故,无极大值;综上:时,在上单调递增,无极值,时,,无极大值;(2)证明:①时,,使,则,,此时成立,②时,由(1)得时,,-8- ,则,解得:,故,设,则,为上的减函数,且,,则存在唯一实数,,使得,,当时,,递增,当,时,,递减,故当时,的最大值是,为,上的增函数,时,,则,故(a),原结论成立.-8-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
江苏省徐州市2022年中考数学总复习提分专练08构造辅助圆习题
2023版高考数学一轮复习课后限时集训21利用导数证明不等式含解析20230318184
全国通用版2022高考数学二轮复习压轴大题突破练四函数与导数2理
全国通用版2022高考数学二轮复习压轴大题突破练四函数与导数2文
全国通用2022高考数学二轮复习大题规范天天练第二周函数与导数
京津专用2022高考数学总复习优编增分练:压轴大题突破练四函数与导数2理
京津专用2022高考数学总复习优编增分练:压轴大题突破练四函数与导数2文
京津专用2022高考数学总复习优编增分练:压轴大题突破练三函数与导数1理
京津专用2022高考数学总复习优编增分练:压轴大题突破练三函数与导数1文
2023届高三数学一轮复习大题专练09导数双变量与极值点偏移问题1
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2023-02-24 20:15:01
页数:8
价格:¥2
大小:495.50 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划