首页

安徽省滁州市凤阳中学高一数学上学期期中试卷含解析

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

2022-2022学年安徽省滁州市凤阳中学高一(上)期中数学试卷一、选择题(本题共12小题,每题5分,共60分)1.设集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},则M∩(∁UN)=()A.{5}B.{0,3}C.{0,2,3,5}D.{0,1,3,4,5}2.函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)3.设a=50.8,b=0.67,c=log0.74,则a,b,c的大小关系是()A.a<c<bB.c<a<bC.b<a<cD.c<b<a4.函数f(x)=lnx﹣的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)5.周长为6,圆心角弧度为1的扇形面积等于()A.1B.C.πD.26.设a>0,则函数y=|x|(x﹣a)的图象大致形状是()A.B.C.D.7.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.8.设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f=()A.0B.2C.D.139.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(a)≤2f(1),则a的最小值是()A.B.1C.D.2-17-\n10.将函数y=sin(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.y=sin(x﹣)B.y=sin(2x﹣)C.y=sinxD.y=sin(x﹣)11.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()12.设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得|x﹣x0|<a,那么称x0为集合X的聚点.现有下列集合:①{y|y=ex},②{x|lnx>0},③,④.其中以0为聚点的集合有()A.①②B.①③C.②③D.②④二、填空题(本题共4小题,每题5分,共20分)13.=__________.14.设,则=__________.15.函数的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=__________.16.函数f(x)=满足[f(x1)﹣f(x2)](x1﹣x2)<0对定义域中的任意两个不相等的x1,x2都成立,则a的取值范围是__________.-17-\n三、解答题(本题共6小题共计70分,解答应写出必要的文字说明和证明步骤)17.已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}.(1)当a=2时,求集合A∩B,A∪B;(2)若A∩(∁UB)=∅,求实数a的取值范围.18.已知tan(π+α)=2,计算(Ⅰ);(Ⅱ).19.已知函数f(x)=log2(4x+1)﹣ax.(1)若函数f(x)是R上的偶函数,求实数a的值;(2)若a=4,求函数f(x)的零点.20.已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.(1)求函数f(x)的解析式;(2)令g(x)=(2﹣2m)x﹣f(x);①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;②求函数g(x)在x∈[0,2]的最小值.21.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)当x∈[﹣,],求f(x)的值域.22.已知定义域为R的函数f(x)=是奇函数.-17-\n(1)求b的值;(2)用定义法证明函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.-17-\n2022-2022学年安徽省滁州市凤阳中学高一(上)期中数学试卷一、选择题(本题共12小题,每题5分,共60分)1.设集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},则M∩(∁UN)=()A.{5}B.{0,3}C.{0,2,3,5}D.{0,1,3,4,5}【考点】交、并、补集的混合运算.【专题】集合.【分析】由全集U及N求出N的补集,找出M与N补集的交集即可.【解答】解:∵集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},∴∁UN={0,2,3},则M∩(∁UN)={0,3}.故选:B.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.3.设a=50.8,b=0.67,c=log0.74,则a,b,c的大小关系是()A.a<c<bB.c<a<bC.b<a<cD.c<b<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】对于a和b,运用指数函数的性质与0,1比较,可知a>1,0<b<1,利用对数函数的单调性得到c<0,从而得到a,b,c的大小.【解答】解:a=50.8>50=1,0<b=0.67<0.60=1c=log0.74<log0.71=0,所以,c<b<a.故选D.-17-\n【点评】本题考查了有理指数幂的化简求值和对数值的大小比较,考查了指数函数和对数函数的单调性,该类大小比较问题,有时利用0和1当媒介,往往能起到事半功倍的效果,此题是基础题4.函数f(x)=lnx﹣的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判断条件,即可得到结论.【解答】解:∵f(x)=lnx﹣,则函数f(x)在(0,+∞)上单调递增,∵f(2)=ln2﹣1<0,f(3)=ln3﹣>0,∴f(2)f(3)<0,在区间(2,3)内函数f(x)存在零点,故选:B【点评】本题主要考查方程根的存在性,利用函数零点的条件判断零点所在的区间是解决本题的关键.5.周长为6,圆心角弧度为1的扇形面积等于()A.1B.C.πD.2【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为:R,所以,2R+R=6,所以R=2,扇形的弧长为:2,半径为2,扇形的面积为:S=×2×2=2故选:D.【点评】本题是基础题,考查扇形的面积公式的应用,考查计算能力.6.设a>0,则函数y=|x|(x﹣a)的图象大致形状是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.-17-\n【分析】确定分段函数的解析式,与x轴的交点坐标为(a,0),(0,0),及对称性即可得到结论.【解答】解:函数y=|x|(x﹣a)=∵a>0,当x≥0,函数y=x(x﹣a)的图象为开口向上的抛物线的一部分,与x轴的交点坐标为(0,0),(a,0)当x<0时,图象为y=﹣x(x﹣a)的图象为开口先向下的抛物线的一部分故选B.【点评】本题考查分段函数,考查函数的化简,考查数形结合的数学思想,属于中档题.7.若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.【考点】运用诱导公式化简求值;任意角的三角函数的定义.【专题】计算题.【分析】先利用诱导公式使tan600°=tan60°,进而根据求得答案.【解答】解:∵,∴.故选A【点评】本题主要考查了用诱导公式化简求值的问题.属基础题.8.设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f=()A.0B.2C.D.13【考点】函数的周期性;函数的值.【专题】函数的性质及应用.【分析】由条件:“f(x)•f(x+2)=13”得出函数f(x)是周期为4的周期函数,从而利用f(1)的值求出f的值.【解答】解:∵f(x)•f(x+2)=13∴f(x+2)•f(x+4)=13,∴f(x+4)=f(x),∴f(x)是一个周期为4的周期函数,∴f=f(4×503+3)=f(3)=f(1+2)=,故选:C【点评】本题主要考查函数值的计算,考查分析问题和解决问题的能力,利用条件判断函数的周期性是解决本题的关键.9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(a)≤2f(1),则a的最小值是()-17-\nA.B.1C.D.2【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行化简,即可得到结论.【解答】解:∵函数f(x)是定义在R上的偶函数,∴,等价为f(log2a)+f(﹣log2a)=2f(log2a)≤2f(1),即f(log2a)≤f(1).∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,∴f(log2a)≤f(1)等价为f(|log2a|)≤f(1).即|log2a|≤1,∴﹣1≤log2a≤1,解得≤a≤2,故a的最小值是,故选:C【点评】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用.10.将函数y=sin(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.y=sin(x﹣)B.y=sin(2x﹣)C.y=sinxD.y=sin(x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可得解,注意三角函数的平移原则为左加右减上加下减.【解答】解:将函数y=sin(x﹣)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为y=sin(x﹣),再将所得图象向左平移个单位,则所得函数图象对应的解析式为y=sin[(x+)﹣]=sin(x﹣),故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换,三角函数的平移原则为左加右减上加下减,属于基础题.-17-\n11.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先作出函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,得到x2+x3=6,且﹣<x1<0;最后结合求得x1+x2+x3的取值范围即可.【解答】解:函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,故x2+x3=6,且x1满足﹣<x1<0;则x1+x2+x3的取值范围是:﹣+6<x1+x2+x3<0+6;即x1+x2+x3∈(,6).故选D【点评】本小题主要考查分段函数的解析式求法及其图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.12.设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得|x﹣x0|<a,那么称x0为集合X的聚点.现有下列集合:①{y|y=ex},-17-\n②{x|lnx>0},③,④.其中以0为聚点的集合有()A.①②B.①③C.②③D.②④【考点】子集与交集、并集运算的转换.【专题】函数的性质及应用.【分析】本题在理解新定义“聚点”的基础上,找出适合条件的函数,得到本题结论.【解答】解:①{y|y=ex},∵y=ex∈(0,+∞),∴{y|y=ex}=(0,+∞),∴对任意a>0,都存在∈X,使得|﹣0|<a,∴集合{y|y=ex}是0为聚点的集合;②{x|lnx>0},∵lnx>0,∴x>1,∴{x|lnx>0}=(1,+∞),∵对>0,不存在x∈(1,+∞),使得|x﹣0|<,∴集合{x|lnx>0}不是0为聚点的集合;③,∵={1,,,,…}∴对任意a>0,都存在∈X,使得|﹣0|<a,∴集合是0为聚点的集合;④,∵={,,,…},∴∵对>0,不存在x∈,使得|x﹣0|<,∴集合不是0为聚点的集合.综上,应选①③.故选B.【点评】本题考查了新定义集合,还考查了函数值域和数列的单调性,本题难度不大,属于基础题.-17-\n二、填空题(本题共4小题,每题5分,共20分)13.=.【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用指数与对数的运算法则、lg2+lg5=1即可得出.【解答】解:原式=lg5+lg2+﹣=1+﹣=.故答案为:.【点评】本题考查了指数与对数的运算法则、lg2+lg5=1,属于基础题.14.设,则=.【考点】函数的值;分段函数的应用.【专题】计算题;函数思想;试验法;函数的性质及应用.【分析】直接利用分段函数的解析式求法函数值即可.【解答】解:,则=cos+2f()=+4f()=cos=.故答案为:.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.15.函数的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=.【考点】对数函数的图像与性质;幂函数的性质.【专题】计算题.-17-\n【分析】欲求函数的图象恒过什么定点,只要考虑对数函数f(x)=logax(a>0,a≠1)的图象恒过什么定点即可知,故只须令x=2即得,再设f(x)=xα,利用待定系数法求得α即可得f(9).【解答】解析:令,即;设f(x)=xα,则,;所以,故答案为:.【点评】本题主要考查了对数函数的图象与性质,以及幂函数的性质,属于容易题.主要方法是待定系数法.16.函数f(x)=满足[f(x1)﹣f(x2)](x1﹣x2)<0对定义域中的任意两个不相等的x1,x2都成立,则a的取值范围是(0,].【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】首先判断函数f(x)在R上单调递减,再分别考虑各段的单调性及分界点,得到0<a<1①a﹣3<0②a0≥(a﹣3)×0+4a③,求出它们的交集即可.【解答】解:[f(x1)﹣f(x2)](x1﹣x2)<0对定义域中的任意两个不相等的x1,x2都成立,则函数f(x)在R上递减,当x<0时,y=ax,则0<a<1①当x≥0时,y=(a﹣3)x+4a,则a﹣3<0②又a0≥(a﹣3)×0+4a③则由①②③,解得0<a≤.故答案为:(0,].【点评】本题考查分段函数及运用,考查函数的单调性及应用,注意分界点的情况,考查运算能力,属于中档题和易错题.三、解答题(本题共6小题共计70分,解答应写出必要的文字说明和证明步骤)17.已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}.(1)当a=2时,求集合A∩B,A∪B;(2)若A∩(∁UB)=∅,求实数a的取值范围.【考点】交、并、补集的混合运算.【专题】集合.【分析】(1)当a=2时,求出集合A,利用集合的基本运算求A∩B,A∪B.-17-\n(2)求出∁UB,然后根据集合关系A∩(∁UB)=∅,确定a的取值范围.【解答】解:由2x+a>0得x>﹣,即A={x|x>﹣.由x2﹣2x﹣3>0得(x+1)(x﹣3)>0,解得x<﹣1或x>3,即B={x|x<﹣1或x>3}.(1)当a=2时,A={x|x>﹣1}.∴A∩B={x|x>3}.A∪B={x|x≠﹣1}.(2)∵B={x|x<﹣1或x>3},∴∁UB={x|﹣1≤x≤3}.又∵A∩(∁UB)=∅,∴﹣≥3,解得a≤﹣6.∴实数a的取值范围是(﹣∞,﹣6].【点评】本题主要考查集合的基本运算,以及利用集合关系确定参数问题,比较基础.18.已知tan(π+α)=2,计算(Ⅰ);(Ⅱ).【考点】运用诱导公式化简求值.【专题】计算题;函数思想;三角函数的图像与性质.【分析】(1)利用诱导公式求出正切函数值,化简所求的表达式为正切函数的形式,求解即可.(2)利用“1”的代换,化简函数的表达式为正切函数的形式,代入求解即可.【解答】解:(1)∵tan(π+α)=2∴tanα=2,(2)=【点评】本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.19.已知函数f(x)=log2(4x+1)﹣ax.(1)若函数f(x)是R上的偶函数,求实数a的值;(2)若a=4,求函数f(x)的零点.【考点】函数的值域;偶函数;对数的运算性质.【专题】计算题.-17-\n【分析】(1)根据偶函数的定义建立恒等式f(﹣x)=f(x)在R上恒成立,从而求出a的值即可;(2)将a=4代入,令f(x)=0然后解对数方程,先求出4x的值,然后利用对数表示出x的值即可.【解答】解:(1)∵f(x)是R上的偶函数∴f(﹣x)=f(x)即f(﹣x)﹣f(x)=0∴[log2(4﹣x+1)﹣a(﹣x)]﹣[log2(4x+1)﹣ax]=0﹣2x+2ax=0即a=1(2)若a=4,f(x)=log2(4x+1)﹣4x令f(x)=0,log2(4x+1)=4x4x+1=24x(4x)2﹣4x﹣1=0或(舍)∴【点评】本题主要考查了偶函数的性质,以及函数的零点,同时考查了对数方程的求解,属于中档题.20.已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.(1)求函数f(x)的解析式;(2)令g(x)=(2﹣2m)x﹣f(x);①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;②求函数g(x)在x∈[0,2]的最小值.【考点】二次函数的性质.【专题】函数的性质及应用.【分析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;②分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.【解答】解:(1)设f(x)=ax2+bx+c,∵f(2)=15,f(x+1)﹣f(x)=﹣2x+1,∴4a+2b+c=15;a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=﹣2x+1;∴2a=﹣2,a+b=1,4a+2b+c=15,解得a=﹣1,b=2,c=15,∴函数f(x)的表达式为f(x)=﹣x2+2x+15;(2)∵g(x)=(2﹣2m)x﹣f(x)=x2﹣2mx﹣15的图象是开口朝上,且以x=m为对称轴的抛物线,①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;②当m≤0时,g(x)在[0,2]上为增函数,当x=0时,函数g(x)取最小值﹣15;-17-\n当0<m<2时,g(x)在[0,m]上为减函数,在[m,2]上为增函数,当x=m时,函数g(x)取最小值﹣m2﹣15;当m≥2时,g(x)在[0,2]上为减函数,当x=2时,函数g(x)取最小值﹣4m﹣11;∴函数g(x)在x∈[0,2]的最小值为【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.21.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)当x∈[﹣,],求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.【专题】整体思想;数形结合法;三角函数的图像与性质.【分析】(Ⅰ)由图可得A,由周期可得ω,再代入点的坐标可得φ值,可得解析式;(Ⅱ)解不等式2kπ﹣≤2x+≤2kπ+可得函数的单调增区间为;(Ⅲ)由x∈[﹣,]可得2x+∈[,],结合三角函数的图象可得最值.【解答】解:(Ⅰ)由图可知A=1,周期T=4(﹣)=π,∴ω==2,∴f(x)=sin(2x+φ),代入点(,﹣1)可得﹣1=sin(+φ),∴+φ=2kπ+,∴φ=2kπ+,k∈Z,∵|φ|<,∴当k=0时,φ=,∴f(x)=sin(2x+);(Ⅱ)由2kπ﹣≤2x+≤2kπ+可得kπ﹣≤x≤kπ+,-17-\n∴函数y=f(x)的单调增区间为:[kπ﹣,kπ+],k∈Z;(Ⅲ)∵x∈[﹣,],∴2x+∈[,],当,即x=时,f(x)取得最大值2;当,即x=时,f(x)取得最小值,∴f(x)的值域为[,2].【点评】本题考查三角函数图象和解析式,涉及三角函数的单调性和值域,属中档题.22.已知定义域为R的函数f(x)=是奇函数.(1)求b的值;(2)用定义法证明函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【考点】函数奇偶性的性质;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】(1)利用f(0)=0即可解出;(2)利用减函数的定义即可证明;(3)利用函数的奇偶性、单调性即可解出.【解答】解:(1)∵定义域为R的函数f(x)=是奇函数.∴f(0)==0,解得b=1.(2)由(1)可得:f(x)==.∀x1<x2,则>0,∴f(x1)﹣f(x2)==>0,∴f(x1)>f(x2).∴函数f(x)在R上是减函数.(3)∵函数f(x)是R上的奇函数,对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,∴f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),∵函数f(x)在R上是减函数,∴t2﹣2t>k﹣2t2,-17-\n∴k<3t2﹣2t=,任意的t∈R恒成立.∴k.因此k的取值范围是.【点评】本题考查了函数的奇偶性、单调性,考查了计算能力,属于基础题.-17-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 语文
发布时间:2022-08-25 20:31:47 页数:17
价格:¥3 大小:592.09 KB
文章作者:U-336598

推荐特供

MORE