首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
江苏省苏州市张家港市高级中学高一期中数学试卷
江苏省苏州市张家港市高级中学高一期中数学试卷
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/11
2
/11
剩余9页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2022学年江苏省苏州市张家港市高级中学高一(上)期中数学试卷 一、填空题(每小题5分,14题,共70分,请将正确答案填写在答题卷相应的横线上)1.设全集A={0,1,2},B={﹣1,0,1},则A∪B= .2.已知f(2x)=6x﹣1,则f(x)= .3.已知幂函数y=f(x)的图象经过点(2,16),则函数f(x)的解析式是 .4.已知函数f(x)=,则f[f()]的值是 .5.函数y=的定义域是 .6.设a=log0.60.9,b=ln0.9,c=20.9,则a、b、c由小到大的顺序是 .7.函数f(x)=的递减区间是 .8.已知lg2=a,lg3=b,用a,b表示log65= .9.函数的值域为 .10.已知f(x)是定义在集合{x|x≠0}上的偶函数,x>0时f(x)=x+,则x<0时f(x)= .11.设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x﹣2|<1},那么P﹣Q等于 .12.若函数f(x)是偶函数,且在(0,+∞)内是增函数,又f(﹣3)=0.则x•f(x)<0的解集是 .13.函数f(x)=|x2﹣2x|﹣a有四个零点,则实数a的取值范围是 .14.已知函数f(x)=,若当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是 . 二、解答题:(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.计算:(1)(2)(lg5)2+lg2•lg50.16.设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}(1)求集合A,B;(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.10/1117.某厂生产一种机器的固定成本(即固定收入)为0.5万元,但每生产一台,需要增加可变成本(即另增加收入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为(万元)(0≤x≤5).其中x是产品售出的数量(单位:百台)(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?18.已知函数f(x)=x2﹣2ax+5(a>1).(1)若f(x)的定义域和值域均是[1,a],求实数a的值;(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],总有f(x)≤0,求实数a的取值范围.19.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)判断函数的单调性并证明;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.20.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值. 10/112022-2022学年江苏省苏州市张家港市高级中学高一(上)期中数学试卷参考答案与试题解析 一、填空题(每小题5分,14题,共70分,请将正确答案填写在答题卷相应的横线上)1.设全集A={0,1,2},B={﹣1,0,1},则A∪B= {﹣1,0,1,2} .【考点】并集及其运算.【分析】直接利用并集运算得答案.【解答】解:∵A={0,1,2},B={﹣1,0,1},则A∪B={0,1,2}∪{﹣1,0,1}={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}. 2.已知f(2x)=6x﹣1,则f(x)= 3x﹣1 .【考点】函数解析式的求解及常用方法.【分析】利用配凑法或者换元法求解该类函数的解析式,注意复合函数中的自变量与简单函数自变量之间的联系与区别.【解答】解:由f(2x)=6x﹣1,得到f(2x)=3(2x﹣)=3(2x)﹣1故f(x)=3x﹣1故答案为:3x﹣1. 3.已知幂函数y=f(x)的图象经过点(2,16),则函数f(x)的解析式是 f(x)=x4 .【考点】幂函数的概念、解析式、定义域、值域.【分析】由已知得2a=16,解得a=4,由此求出f(x)=x4.【解答】解:∵幂函数y=f(x)=xa的图象经过点(2,16),∴2a=16,解得a=4,∴f(x)=x4.故答案为:f(x)=x4. 4.已知函数f(x)=,则f[f()]的值是 .【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】先求,,故代入x>0时的解析式;求出=﹣2,,再求值即可.【解答】解:,10/11故答案为: 5.函数y=的定义域是 (,3] .【考点】函数的值域.【分析】根据对数函数单调性和二次根式的意义,求得范围.【解答】解:由题意得2x﹣5>0,且log0.5(2x﹣5)≥0=log0.51,即x>且,2x﹣5≤1,解得<x≤3,故答案为:(,3]. 6.设a=log0.60.9,b=ln0.9,c=20.9,则a、b、c由小到大的顺序是 b<a<c .【考点】对数值大小的比较.【分析】利用对数函数的单调性即可得出.【解答】解:∵0<a=log0.60.9<log0.60.6=1,b=ln0.9<0,c=20.9>1,∴b<a<c.故答案为:b<a<c. 7.函数f(x)=的递减区间是 (﹣∞,﹣3] .【考点】函数的单调性及单调区间.【分析】令t=x2+2x﹣3≥0,求得函数的定义域,且f(x)=,本题即求函数t在定义域内的减区间,结合二次函数t=x2+2x﹣3的性质可得t在定义域内的减区间.【解答】解:令t=x2+2x﹣3≥0,可得x≤﹣3,或x≥1,故函数的定义域为(﹣∞,﹣3]∪[1,+∞),且f(x)=,故本题即求函数t在定义域内的减区间.结合二次函数t=x2+2x﹣3的性质可得t在定义域内的减区间为(﹣∞,﹣3],故答案为:(﹣∞,﹣3]. 8.已知lg2=a,lg3=b,用a,b表示log65= .【考点】对数的运算性质.【分析】利用换底公式将log65用lg2与lg3表示出来,再换成用字母a,b表示即可得.【解答】解:log65=,又由已知lg2=a,lg3=b,10/11故log65=,故答案为 9.函数的值域为 (﹣∞,1] .【考点】函数的值域.【分析】先确定函数的定义域,再考查函数在定义域内的单调性,根据函数的单调性来确定函数的值域.【解答】解:函数的定义域是(﹣∞,1],且在此定义域内是增函数,∴x=1时,函数有最大值为1,x→﹣∞时,函数值y→﹣∞,∴函数的值域是(﹣∞,1].故答案为:(﹣∞,1]. 10.已知f(x)是定义在集合{x|x≠0}上的偶函数,x>0时f(x)=x+,则x<0时f(x)= ﹣x﹣ .【考点】函数奇偶性的性质.【分析】由偶函数的性质及对称性得到x<0时,f(x)=(﹣x)+,由此能求出结果.【解答】解:∵f(x)是定义在集合{x|x≠0}上的偶函数,x>0时,f(x)=x+,∴由偶函数的性质得:x<0时,f(x)=f(﹣x)=(﹣x)+=﹣x﹣.故答案为:. 11.设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x﹣2|<1},那么P﹣Q等于 (0,1] .【考点】交、并、补集的混合运算.【分析】根据对数函数的定义域及单调性求出集合P中的不等式的解集,求出集合Q中的绝对值不等式的解集,然后根据题中的新定义即可求出P﹣Q.【解答】解:由集合P中的不等式log2x<1=log22,根据2>1得到对数函数为增函数及对数函数的定义域,得到0<x<2,所以集合P=(0,2);集合Q中的不等式|x﹣2|<1可化为:,解得1<x<3,所以集合Q=(1,3),则P﹣Q=(0,1]10/11故答案为:(0,1] 12.若函数f(x)是偶函数,且在(0,+∞)内是增函数,又f(﹣3)=0.则x•f(x)<0的解集是 (﹣∞,﹣3)∪(0,3) .【考点】奇偶性与单调性的综合.【分析】先利用f(x)是偶函数单调性在对称区间上相反,分析出函数的单调性,结合f(﹣3)=0,分析出函数在各个区间上的符号,进而得到x•f(x)<0的解集【解答】解:∵函数f(x)是偶函数,且在(0,+∞)内是增函数,∴f(x)在(﹣∞,0)内是减函数又∵f(﹣3)=f(3)=0∴f(x)<0的解集是(﹣3,3),f(x)>0的解集是(﹣∞,﹣3),(3,+∞)∴x•f(x)<0的解集为(﹣∞,﹣3)∪(0,3)故答案为:(﹣∞,﹣3)∪(0,3) 13.函数f(x)=|x2﹣2x|﹣a有四个零点,则实数a的取值范围是 (0,1) .【考点】根的存在性及根的个数判断.【分析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到a的范围.【解答】解:令f(x)=|x2﹣2x|﹣a=0,得a=|x2﹣2x|,作出y=|x2﹣2x|与y=a的图象,要使函数f(x)=|x2﹣2x|﹣a有四个零点,则y=|x2﹣2x|与y=a的图象有四个不同的交点,所以0<a<1,故答案为:(0,1). 14.已知函数f(x)=,若当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是 [log3,1] .【考点】分段函数的应用.10/11【分析】通过t的范围,求出f(t)的表达式,判断f(t)的范围,然后代入已知函数,通过函数的值域求出t的范围即可.【解答】解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数f(x)=,所以f(f(t))=3(不成立)或f(f(t)=﹣•3t,因为f(f(t))∈[0,1],所以0≤﹣•3t≤1,即≤3t≤3,解得:log3≤t≤1,又t∈[0,1],所以实数t的取值范围[log3,1].故答案为:[log3,1]. 二、解答题:(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.计算:(1)(2)(lg5)2+lg2•lg50.【考点】对数的运算性质;有理数指数幂的化简求值.【分析】(1)利用指数与对数的运算法则即可得出;(2)利用对数的运算法则、lg2+lg5=1即可得出.【解答】解:(1)原式=﹣+3+1=4﹣+1+3+1=8﹣.(2)原式=lg25+lg2(1+lg5)=lg5(lg5+lg2)+lg2=lg5+lg2=1. 16.设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}(1)求集合A,B;(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.【考点】对数函数的定义域;并集及其运算;函数的值域.【分析】(1)集合A即函数y=log2(x﹣1)定义域,B即y=﹣x2+2x﹣2,x∈R的值域.10/11(2)先求出集合C,由B∪C=C可得B⊆C,∴﹣>﹣1,解不等式得到实数a的取值范围.【解答】解:(1)A={x|y=log2(x﹣1)}={x|(x﹣1)>0}=(1,+∞),B={y|y=﹣x2+2x﹣2,x∈R}={y|y=﹣(x﹣1)2﹣1,x∈R}=(﹣∞,﹣1].(2)集合C={x|2x+a<0}={x|x<﹣},∵B∪C=C,∴B⊆C,∴,∴实数a的取值范围(﹣∞,2). 17.某厂生产一种机器的固定成本(即固定收入)为0.5万元,但每生产一台,需要增加可变成本(即另增加收入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为(万元)(0≤x≤5).其中x是产品售出的数量(单位:百台)(1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?【考点】函数模型的选择与应用.【分析】(1)利润y是指生产数量x的产品售出后的总收入R(x)与其成本C(x)之差,由题意,当x≤5时,产品能够全部售出,当x>5时,只能销售500台,由此能把利润表示为年产量的函数.(2)当0≤x≤5时,,当(百台)时,ymax=10.78125(万元);当x>5(百台)时,y<12﹣0.25×5=10.75(万元).由此能求出年产量是多少时,工厂所得利润最大.【解答】解:(1)利润y是指生产数量x的产品售出后的总收入R(x)与其成本C(x)之差,由题意,当x≤5时,产品能够全部售出,当x>5时,只能销售500台,所以,整理,得,(2)当0≤x≤5时,,当(百台)时,ymax=10.78125(万元);当x>5(百台)时,y<12﹣0.25×5=10.75(万元).10/11综上所述,当生产475台时,工厂所得利润最大. 18.已知函数f(x)=x2﹣2ax+5(a>1).(1)若f(x)的定义域和值域均是[1,a],求实数a的值;(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],总有f(x)≤0,求实数a的取值范围.【考点】二次函数的性质.【分析】(1)由f(x)的对称轴是x=a知函数在[1,a]递减,根据定义域和值域均为[1,a],列出方程组即可求得a值;(2)由f(x)在区间(﹣∞,2]上是减函数得a≥2,由函数在区间[1,a+1]上总有f(x)≤0,可得,解得a的取值范围即可.【解答】解:(1)∵f(x)=(x﹣a)2+5﹣a2(a>1),∴f(x)在[1,a]上是减函数,又定义域和值域均为[1,a],∴,即,解得a=2.(2)∵f(x)在区间(﹣∞,2]上是减函数,∴a≥2,又∵对任意的x∈[1,a+1],总有f(x)≤0,∴,即解得:a≥3,综上所述,a≥3 19.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)判断函数的单调性并证明;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【考点】函数单调性的性质;函数单调性的判断与证明.【分析】(1)由f(x)为R上的奇函数得f(0)=0,f(﹣1)=﹣f(1),解出方程可得a,b值;(2)由(1)知f(x)==﹣,利用单调性定义可作出判断;(3)由f(x)的奇偶性可得,f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),根据单调性可去掉符号“f”,转化为函数最值解决即可;【解答】解:(1)因为f(x)为R上的奇函数,所以f(0)=0,即=0,解得b=1,10/11由f(﹣1)=﹣f(1),得,解得a=2,所以a=2,b=1,即有f(x)=为奇函数,故a=2,b=1;(2)f(x)为R上的减函数,证明如下:由(1)知f(x)==﹣,设x1<x2,则f(x1)﹣f(x2)=(﹣)﹣(﹣)=,因为x1<x2,所以>0,,+1>0,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)为减函数;(3)因为f(x)为奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0可化为f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),又由(2)知f(x)为减函数,所以t2﹣2t>k﹣2t2,即3t2﹣2t>k恒成立,而3t2﹣2t=3﹣,所以k<. 20.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.【考点】函数单调性的性质.【分析】(1)根据二次函数的性质,我们可以得出y=f(x)=x2在区间[0,1]上单调递增,且值域也为[0,1]满足“和谐区间”的定义,即可得到结论.10/11(2)该问题是一个确定性问题,从正面证明有一定的难度,故可采用反证法来进行证明,即先假设区间[m,n]为函数的“和谐区间”,然后根据函数的性质得到矛盾,进而得到假设不成立,原命题成立.(3)设[m,n]是已知函数定义域的子集,我们可以用a表示出n﹣m的取值,转化为二次函数的最值问题后,根据二次函数的性质,可以得到答案.【解答】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值 10/11
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2020年江苏省苏州市中考数学试卷
2021年江苏省苏州市中考数学试卷
2020年江苏省苏州市中考数学试卷(原卷版)
2020年江苏省苏州市中考数学试卷(解析版)
2021年江苏省苏州市中考数学试卷
2019-2020学年江苏省某校高一(上)期中数学试卷 (1)
2019-2020学年江苏省某校高一(上)期中数学试卷
2019-2020学年江苏省苏州市常熟市高一(上)期中数学试卷
2020-2021学年江苏省苏州市常熟市高二(上)期中数学试卷
2020-2021学年江苏省苏州市高二(上)期中数学试卷
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-08-25 20:49:43
页数:11
价格:¥3
大小:221.93 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划