首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南省信阳市高二期末数学试卷(理科)
河南省信阳市高二期末数学试卷(理科)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/21
2
/21
剩余19页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2022学年河南省信阳市高二(上)期末数学试卷(理科) 一、选择题(共12小题,每小题5分,满分60分)1.命题“∃x0∈R,x02+sinx0+e<1”的否定是( )A.∃x0∈R,x02+sinx0+e>1B.∃x0∈R,x02+sinx0+e≥1C.∀x∈R,x2+sinx+ex>1D.∀x∈R,x2+sinx+ex≥12.抛物线y=9x2的焦点坐标为( )A.(,0)B.(0,)C.(,0)D.(0,)3.不等式3+5x﹣2x2>0的解集为( )A.(﹣3,)B.(﹣∞,﹣3)∪(,+∞)C.(﹣,3)D.(﹣∞,﹣)∪(3,+∞)4.设=(3,﹣2,﹣1)是直线l的方向向量,=(1,2,﹣1)是平面α的法向量,则( )A.l⊥αB.l∥αC.l⊂α或l⊥αD.l∥α或l⊂α5.已知正数a,b满足4a+b=3,则e•e的最小值为( )A.3B.e3C.4D.e46.已知等差数列{an}前n项和为Sn,若S15=75,a3+a4+a5=12,则S11=( )A.122B.99C.D.7.已知各项均不为零的数列{an}满足an+12=anan+2,且32a8﹣a3=0,记Sn是数列{an}的前n项和,则的值为( )A.﹣B.C.﹣9D.98.已知抛物线C与双曲线x2﹣y2=1有相同的焦点,且顶点在原点,则抛物线C的方程为( )A.y2=±2xB.y2=±2xC.y2=±4xD.y2=±4x9.已知命题p:x2+2x﹣3>0;命题q:x>20/21a,且¬q的一个充分不必要条件是¬p,则a的取值范围是( )A.(﹣∞,1]B.[1,+∞)C.[﹣1,+∞)D.(﹣∞,﹣3]10.如图,已知四边形ABCD是圆内接四边形,且∠BCD=120°,AD=2,AB=BC=1,现有以下结论:①B,D两点间的距离为;②AD是该圆的一条直径;③CD=;④四边形ABCD的面积S=.其中正确结论的个数为( )A.1B.2C.3D.411.已知双曲线C1:﹣=1(a>b>0)的左、右焦点分别为F1,F2,点M在双曲线C1的一条渐近线上,且OM⊥MF2,若△OMF2的面积为16,且双曲线C1与双曲线C2:﹣=1的离心率相同,则双曲线C1的实轴长为( )A.32B.16C.8D.412.已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足=(0<λ<1)时,平面DEF⊥平面PCE,则λ的值为( )A.B.C.D. 二、填空题(共4小题,每小题5分,满分20分)20/2113.已知锐角△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=4csinC﹣bcosA,则cosC= .14.当x∈R时,一元二次不等式x2﹣kx+1>0恒成立,则k的取值范围是 .15.若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是 .16.已知实数x,y满足,若z=ax+y有最大值7,则实数a的值为 . 三、解答题(共5小题,满分60分)17.已知棱长为1的正方体ABCD﹣A1B1C1D1中,E,F分别是棱B1C1,C1D1的中点.(I)求AD1与EF所成角的大小;(II)求AF与平面BEB1所成角的余弦值.18.已知数列{an}满足a2=,且an+1=3an﹣1(n∈N*).(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;(2)若不等式≤m对∀n∈N*恒成立,求实数m的取值范围.19.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足=.(I)求C的值;(II)若=2,b=4,求△ABC的面积.20.已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1=AB,E是线段CC1的中点,连接AE,B1E,AB1,B1C,BC1,得到的图形如图所示.(I)证明BC1⊥平面AB1C;(II)求二面角E﹣AB1﹣C的大小.20/2121.已知椭圆C:+=1(a>b>0)过点(,﹣),且离心率为.(I)求椭圆C的标准方程;(II)若点A(x1,y1),B(x2,y2)是椭圆C上的亮点,且x1≠x2,点P(1,0),证明:△PAB不可能为等边三角形. 请考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分:22.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程为(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=,求l的斜率.23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围. 20/212022-2022学年河南省信阳市高二(上)期末数学试卷(理科)参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)1.命题“∃x0∈R,x02+sinx0+e<1”的否定是( )A.∃x0∈R,x02+sinx0+e>1B.∃x0∈R,x02+sinx0+e≥1C.∀x∈R,x2+sinx+ex>1D.∀x∈R,x2+sinx+ex≥1【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:命题是特称命题,则根据特称命题的否定是全称命题得命题的否定是:∀x∈R,x2+sinx+ex≥1,故选:D 2.抛物线y=9x2的焦点坐标为( )A.(,0)B.(0,)C.(,0)D.(0,)【考点】抛物线的简单性质.【分析】先将方程化成标准形式,求出p的值,即可得到焦点坐标【解答】解:∵抛物线y=9x2,即x2=y,∴p=,=,∴焦点坐标是(0,),故选:B 3.不等式3+5x﹣2x2>0的解集为( )20/21A.(﹣3,)B.(﹣∞,﹣3)∪(,+∞)C.(﹣,3)D.(﹣∞,﹣)∪(3,+∞)【考点】一元二次不等式的解法.【分析】把不等式化为一般形式,求出解集即可.【解答】解:不等式3+5x﹣2x2>0可化为2x2﹣5x﹣3<0,即(2x+1)(x﹣3)<0,解得﹣<x<3,所以原不等式的解集为(﹣,3).故选:C. 4.设=(3,﹣2,﹣1)是直线l的方向向量,=(1,2,﹣1)是平面α的法向量,则( )A.l⊥αB.l∥αC.l⊂α或l⊥αD.l∥α或l⊂α【考点】平面的法向量.【分析】利用空间线面位置关系、法向量的性质即可判断出结论.【解答】解:∵•=3﹣4+1=0,∴.∴l∥α或l⊂α,故选:D. 5.已知正数a,b满足4a+b=3,则e•e的最小值为( )A.3B.e3C.4D.e4【考点】基本不等式.【分析】利用基本不等式的性质、指数函数的运算性质即可得出.【解答】解:∵正数a,b满足4a+b=3,∴==≥=20/21=3.当且仅当b=2a=1时取等号.则e•e=≥e3.故选:B. 6.已知等差数列{an}前n项和为Sn,若S15=75,a3+a4+a5=12,则S11=( )A.122B.99C.D.【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式和通项公式,列出方程组,求出首项和公差,由此能求出S11.【解答】解:∵等差数列{an}前n项和为Sn,S15=75,a3+a4+a5=12,∴,S11=11a1+=11×+=.故选:C. 7.已知各项均不为零的数列{an}满足an+12=anan+2,且32a8﹣a3=0,记Sn是数列{an}的前n项和,则的值为( )A.﹣B.C.﹣9D.9【考点】数列递推式.【分析】利用等比数列的通项公式可得公比q,再利用求和公式即可得出.【解答】解:各项均不为零的数列{an}满足an+12=anan+2,∴此数列是等比数列.设公比为q.∵32a8﹣a3=0,∴=0,解得q=.则===﹣=﹣20/21.故选:A. 8.已知抛物线C与双曲线x2﹣y2=1有相同的焦点,且顶点在原点,则抛物线C的方程为( )A.y2=±2xB.y2=±2xC.y2=±4xD.y2=±4x【考点】抛物线的标准方程;双曲线的简单性质.【分析】由双曲线得焦点坐标,从而可得抛物线的焦点坐标,进而写出抛物线方程.【解答】解:由题意,双曲线x2﹣y2=1的焦点为(,0)∴抛物线的焦点坐标为(,0)设抛物线的方程为:y2=±2px(p>0)∴=,∴p=2,∴抛物线方程是y2=x.故选D. 9.已知命题p:x2+2x﹣3>0;命题q:x>a,且¬q的一个充分不必要条件是¬p,则a的取值范围是( )A.(﹣∞,1]B.[1,+∞)C.[﹣1,+∞)D.(﹣∞,﹣3]【考点】命题的否定;必要条件、充分条件与充要条件的判断.【分析】由p转化到¬p,求出¬q,然后解出a.【解答】解:由p:x2+2x﹣3>0,知x<﹣3或x>1,则¬p为﹣3≤x≤1,¬q为x≤a,又¬p是¬q的充分不必要条件,所以a≥1.故选:B. 10.如图,已知四边形ABCD是圆内接四边形,且∠BCD=120°,AD=2,AB=BC=1,现有以下结论:①B,D两点间的距离为;②AD是该圆的一条直径;③CD=;④四边形ABCD的面积S=.其中正确结论的个数为( )20/21A.1B.2C.3D.4【考点】弦切角;圆周角定理.【分析】在①中,由余弦定理求出BD=;在②中,由AB⊥BD,知AD是该圆的一条直径;在③中,推导出CD=1;在④中,由四边形是梯形,高为,求出四边形ABCD的面积S=.【解答】解:在①中,∵∠BCD=120°,∴∠A=60°,∵AD=2,AB=1,∴BD==,故①正确;在②中,∵AB⊥BD,∴AD是该圆的一条直径,故②正确;在③中,3=1+CD2﹣2CD•(﹣),∴CD2+CD﹣2=0,∴CD=1,故③不正确;在④中,由③可得四边形是梯形,高为,四边形ABCD的面积S=,故④正确.故选:C. 11.已知双曲线C1:﹣=1(a>b>0)的左、右焦点分别为F1,F2,点M在双曲线C1的一条渐近线上,且OM⊥MF2,若△OMF2的面积为16,且双曲线C1与双曲线C2:﹣=1的离心率相同,则双曲线C1的实轴长为( )A.32B.16C.8D.4【考点】双曲线的简单性质.【分析】由双曲线C1的一条渐近线为y=x,利用点到直线的距离公式可知:丨F2M丨==b,丨OM丨==a,△OMF2的面积S=丨F220/21M丨•丨OM丨=16,则ab=32,双曲线C2的离心率e=,即可求得a和b的值,双曲线C1的实轴长2a=16.【解答】解:由双曲线C1:﹣=1(a>b>0)的一条渐近线为y=x,∵OM⊥MF2,F2(c,0),∴丨F2M丨==b,∵丨OF2丨=c,丨OM丨==a△OMF2的面积S=丨F2M丨•丨OM丨=ab=16,则ab=32,双曲线C2:﹣=1的离心率e===,∴e===,解得:a=8,b=4,双曲线C1的实轴长2a=16,故选B. 12.已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足=(0<λ<1)时,平面DEF⊥平面PCE,则λ的值为( )A.B.C.D.【考点】平面与平面垂直的性质.【分析】20/21以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角从标系,利用向量法能求出λ的值.【解答】解:由题意,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则D(0,4,0),E(4,0,2),C(4,4,0),P(0,0,4),A(0,0,0),B(4,0,0),设F(t,0,0),0≤t≤4,=(0<λ<1),则(t,0,0)=(4λ,0,0),∴t=4λ,∴F(4λ,0,0),=(4,﹣4,2),=(4λ,﹣4,0),=(4,4,﹣4),=(4,0,﹣2),设平面DEF的法向量=(x,y,z),则,取x=1,得=(1,λ,2λ﹣2),设平面PCE的法向量=(a,b,c),则,取a=1,得=(1,1,2),∵平面DEF⊥平面PCE,∴=1+λ+2(2λ﹣2)=0,解得.故选:C. 二、填空题(共4小题,每小题5分,满分20分)13.已知锐角△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=4csinC﹣bcosA,则cosC= .【考点】正弦定理.20/21【分析】由正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式化简已知等式可得sinC=4sin2C,结合C为锐角,可求sinC,进而利用同角三角函数基本关系式可求cosC的值.【解答】解:∵acosB=4csinC﹣bcosA,∴由正弦定理可得:sinAcosB+sinBcosA=4sin2C,又∵sinAcosB+sinBcosA=sin(A+B)=sinC,∴sinC=4sin2C,∵C为锐角,sinC>0,cosC>0,∴sinC=,cosC==.故答案为:. 14.当x∈R时,一元二次不等式x2﹣kx+1>0恒成立,则k的取值范围是 ﹣2<k<2 .【考点】二次函数的性质.【分析】由题意可得k2﹣4<0,解不等式可求k的范围.【解答】解:∵x∈R时,一元二次不等式x2﹣kx+1>0恒成立,∴k2﹣4<0,∴﹣2<k<2,故答案为:﹣2<k<2. 15.若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是 .【考点】余弦定理;正弦定理.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC===20/21=≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:. 16.已知实数x,y满足,若z=ax+y有最大值7,则实数a的值为 ﹣ .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(7,10),由z=ax+y得y=﹣ax+z,若a=0,则y=﹣ax+z,在A处取得最大值,此时最大值为10,不满足条件.若a>0,即﹣a<0,此时在A处取得最大值,此时7a+10=7,即7a=﹣3,a=﹣,不成立,若a<0,即﹣a>0,此时在A处取得最大值,此时7a+10=7,即7a=﹣3,a=﹣,综上a=﹣,故答案为:﹣,20/21 三、解答题(共5小题,满分60分)17.已知棱长为1的正方体ABCD﹣A1B1C1D1中,E,F分别是棱B1C1,C1D1的中点.(I)求AD1与EF所成角的大小;(II)求AF与平面BEB1所成角的余弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)建立如图所示的坐标系,利用向量法求AD1与EF所成角的大小;(II)求出平面BEB1的法向量,利用向量法求AF与平面BEB1所成角的余弦值.【解答】解:(I)建立如图所示的坐标系,D(0,0,0),A(1,0,0),E(0,,1),F(,1,1),D1(0,0,1),=(﹣1,0,1),=(,,0),设AD1与EF所成角为α,∴cosα=||=,∴AD1与EF所成角的大小为60°;(II)=(0,0,1),=(﹣1,﹣,1),设平面BEB1的法向量为=(x,y,z),则,20/21取=(1,﹣2,0),∵=(﹣,1,1),∴AF与平面BEB1所成角的正弦值为||=,∴AF与平面BEB1所成角的余弦值为. 18.已知数列{an}满足a2=,且an+1=3an﹣1(n∈N*).(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;(2)若不等式≤m对∀n∈N*恒成立,求实数m的取值范围.【考点】数列与不等式的综合;数列的求和.【分析】(1)由an+1=3an﹣1(n∈N*),可得an+1﹣=3(an﹣),利用等比数列的通项公式与求和公式即可得出.(2)不等式≤m,化为:≤m,由于=单调递减,即可得出m的求值范围.【解答】解:(1)∵an+1=3an﹣1(n∈N*),∴an+1﹣=3(an﹣),∴数列是等比数列,首项为3,公比为3.20/21∴an﹣=3×3n﹣1=3n,∴an=+3n,∴Sn=+=.(2)不等式≤m,化为:≤m,∵=单调递减,∴m≥=.∴实数m的取值范围是. 19.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足=.(I)求C的值;(II)若=2,b=4,求△ABC的面积.【考点】正弦定理;三角函数的化简求值;余弦定理.【分析】(I)利用诱导公式,正弦定理,同角三角函数基本关系式化简已知等式可得tanC=,利用特殊角的三角函数值即可得解C的值.(II)由余弦定理可求a的值,进而利用三角形面积公式即可计算得解.【解答】解:(I)∵=.∴=,由正弦定理可得:,可得:tanC=,∴C=.(II)∵C=,=2,b=4,∴由余弦定理c2=a2+b2﹣2abcosC,可得:(2a)2=a2+(4)2﹣2×20/21,整理可得:a2+4a﹣16=0,解得:a=2﹣2,∴S△ABC=absinC=(2﹣2)××=2﹣2. 20.已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1=AB,E是线段CC1的中点,连接AE,B1E,AB1,B1C,BC1,得到的图形如图所示.(I)证明BC1⊥平面AB1C;(II)求二面角E﹣AB1﹣C的大小.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出AC⊥BC,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能证明BC1⊥平面AB1C.(Ⅱ)求出平面AB1C的法向量,和平面AB1E的法向量,利用向量法能求出二面角E﹣AB1﹣C的大小.【解答】证明:(Ⅰ)∵直棱柱ABC﹣A1B1C1中,AC=BC=CC1=AB,∴AC2+BC2=AB2,∴AC⊥BC,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,设AC=BC=CC1=AB=1,则B(0,1,0),C1(0,0,1),A(1,0,0),B1(0,1,1),C(0,0,0),=(0,﹣1,1),=(﹣1,1,1),=(﹣1,0,0),=(﹣1,0,1),∴•=0,=0﹣1+1=0,∴BC1⊥AC,BC1⊥AB1,∵AC∩AB1=A,∴BC1⊥平面AB1C.20/21解:(Ⅱ)∵BC1⊥平面AB1C,∴=(0,﹣1,1)是平面AB1C的法向量,E(0,,0),=(﹣1,0,),设平面AB1E的法向量=(x,y,z),则,取x=1,得=(1,﹣1,2),设二面角E﹣AB1﹣C的大小为θ,则cosθ===,∴θ=30°.∴二面角E﹣AB1﹣C的大小为30°. 21.已知椭圆C:+=1(a>b>0)过点(,﹣),且离心率为.(I)求椭圆C的标准方程;(II)若点A(x1,y1),B(x2,y2)是椭圆C上的亮点,且x1≠x2,点P(1,0),证明:△PAB不可能为等边三角形.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意列关于a,b,c的方程组,求解得到a,b的值,则椭圆方程可求;(Ⅱ)求出PA,PB,证明|PA|≠|PB|,即可证明:△PAB不可能为等边三角形.20/21【解答】(I)解:由题意,得,解得.∴椭圆C的标准方程为;(II)证明:证明:A(x1,y1),则,且x1∈[﹣,],|PA|===,B(x2,y2),同理可得|PB|=,且x2∈[﹣,].y=在[﹣,]上单调,∴有x1=x2⇔|PA|=|PB|,∵x1≠x2,∴|PA|≠|PB|,∴△PAB不可能为等边三角形. 请考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分:22.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程为(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=,求l的斜率.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出C的极坐标方程.(Ⅱ)直线l的直角坐标方程为=0,圆心(﹣6,0)到直线l的距离d==,由此能求出l的斜率k.【解答】解:(Ⅰ)∵在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,20/21x=ρcosθ,y=ρsinθ,ρ2=x2+y2,∴C的极坐标方程为ρ2+ρcosθ+11=0.(Ⅱ)∵直线l的参数方程为(t为参数),α为直线l的倾斜角,∴直线l的直角坐标方程为=0,∵l与C交于A,B两点,且|AB|=,∴圆心(﹣6,0)到直线l的距离d==,解得cosα=,当cosα=时,l的斜率k=tanα=2;当cosα=﹣时,l的斜率k=tanα=﹣2. 23.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】绝对值不等式的解法.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,20/212|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞). 20/21
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学试卷全国卷(理科)
河南省信阳市2021-2022学年高二上学期理科数学期中测试卷
河南省开封市2022届高三二模理科数学试卷(PDF版带答案)
河南省2022学年信阳市高二上学期期末考试地理试题
河南省信阳市高二物理上学期期中试题含解析
高二理科第一学期期中考试数学试卷
江苏省徐州市高二(上)期末数学试卷(理科)
安徽省黄山市高二期末数学试卷(理科)
北京师大附中高二(上)期中数学试卷(理科)
人教版河南省信阳市潢川县上学期期末学业水平测试七年级数学试卷
文档下载
收藏
所属:
高中 - 数学
发布时间:2022-08-25 20:57:05
页数:21
价格:¥3
大小:416.46 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划