首页

河南省洛阳市2022届高三数学5月“三练”考试试题 文 新人教A版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

洛阳市2022—2022学年高三年级5月统一考试数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卷上.2.每小题选出答案后,用铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,将答题卷交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|x+1>0},集合B={x∈R|(x-1)(x+2)<0},则A∩B=A.(-1,1)B.(-2,-1)C.(-∞,-2)D.(1,+∞)2.复数z满足=,i为虚数单位,则z的实部为A.1B.C.-D.-13.如图所示程序框图,执行该程序后输出的结果是A.126B.64C.62D.304.某三棱锥的三视图如图所示,则该三棱锥外接球的直径为A.B.C.5D.105.直线2x+my=2m-4与直线mx+2y=m-2平行的充要条件是A.m=2B.m=±2C.m=0D.m=-211\n6.已知=(2sinx,1),=(cosx,-2),则函数f(x)=·+1的一个对称中心是A.(0,0)B.(,-1)C.(,-1)D.(,0)7.椭圆(a>b>0)的左,右焦点分别为F1,F2,O为原点,M为椭圆上一点,|MO|=|OF2|,∠F1MF2=120°,则椭圆的离心率为A.B.C.D.8.数列{}满足a1=1,a2=1,=+(n∈N﹡,n≥3).从该数列的前15项中随机抽取一项,则它是3的倍数的概率为A.B.C.D.9.设变量x,y满足不等式组则2x+3y的最大值等于A.20B.45C.50D.5510.直角△ABC中,∠C=90°,BC=2,=t,其中1≤t≤3,则·的最大值为A.12B.2C.3D.811.函数y=-2sinx的图象大致是12.已知函数f(x)=m(x+m)(2x-m-6),g(x)=-2,命题p:∈R,f(x)<0或g(x)<0.命题q:若方程f(x)=0的两根为α,β,则α<1且β>1.如果命题p∧q为真命题,则实数m的取值范嗣是A.(-8,-2)∪(-1,0)B.(-8,-2)∪(-1,1)C.(-8,-4)∪(-2,0)D.(-8,-4)∪(-1,0)第Ⅱ卷(非选择题,共90分)11\n三、填空题:本题共4小题。每小题5分,共20分.13.曲线y=在点(1,-1)处的切线方程是_________________.14.已知x>0,则的最大值为________________________.15.已知sinα=-,且α是第三象限角,则sin2α-tanα=_______________.16.如图多面体ABCDEF中,ABCD是边长为2的正方形,AE⊥平面ABCD,BF∥AE且AE=2BF=4,则以下结论正确的是______________________.(写出所有正确结论的编号)①CF∥DE;②BD∥平面CEF;③AF⊥平面BCE;④平面CEF⊥平面ADE.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程和演算步骤.17.(本小题满分12分)已知各项为正数的等差数列{}的前n项和为,a1,a2,S3成等比数列,且a3=5.(1)求数列{}的通项公式;(2)若数列{}满足-=,n∈N﹡,且b1=2,求数列{}的通项公式.18.(本小题满分12分)如图,三棱锥A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,点E是线段AD的中点.(1)如果CD=,求证:平面BCE⊥平面ABD;(2)如果∠CBD=,求直线CE和平面BCD所成的角的余弦值.19.(本小题满分12分)某年级有男生280人,女生210人,用分层抽样的方法从该年级全体学生中抽取一个容量为7的样本,作为学生代表参加一次植树活动,每名同学分别种植5棵树苗,假设每名同学至少种活一棵树苗,甲同学种活的树苗数为a,乙同学种活的树苗数为b.(1)从参加植树活动的学生代表中任意选取两名代表,求至少有一名女生代表的概率;(2)将a,b,4分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.20.(本小题满分12分)11\n已知双曲线C1:(a>0,b>0)的一条渐近线为x+2y=0,且点(2,)在双曲线C1上。(1)求双曲线C1的标准方程;(2)设抛物线C2:=2py(p>0)的焦点F是双曲线C1的一个顶点,过点P(0,t)(t>0)任意作一条直线交抛物线于两点A,B,直线AF,BF与抛物线的另一交点分别为M,N.若直线MN的斜率为k1,直线AB的斜率为k2.问:是否存在实数t,使得k1=2k2恒成立?若存在,求t的值,若不存在,说明理由.21.(本小题满分12分)已知函数f(x)=,g(x)=-+(2-a)x+b.(1)若函数h(x)=f(x)·g(x)的一个极值点为x=1,求函数h(x)的单调区间;(2)若函数f1(x)=f(|x-m|),f2(x)=f(nx),存在x0∈[0,1]对于任意的x∈[0,1],使得|f1(x)-f2(x0)|<1成立,求实数m的取值范围.请考生在第22、23、24题中任选一题做答。如果多做。则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲E为圆内两弦AB和CD的交点,过点E作AD的平行线交BC的延长线于点F.(1)求证:△EFC∽△BFE;(2)若AE=EB,DE=6,CE=5,延长BA至点P,PA=AE且PD切圆于点D,求PD的长.23.(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,圆C的极坐标方程为ρ=2cosθ-2sinθ,点A的极坐标为(,2π),把极点作为平面直角坐标系的原点,极轴作为x轴的正半轴,并在两种坐标系中取相同的长度单位。(1)求圆C在直角坐标系中的标准方程;(2)设P为圆C上任意一点,圆心C为线段AB的中点,求|PA|+|PB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲已知关于x的不等式|ax-2|+a|x-1|≥2(a>0).11\n(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求实数a的取值范围.11\n11\n11\n11\n11\n11\n11

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:57:48 页数:11
价格:¥3 大小:1.66 MB
文章作者:U-336598

推荐特供

MORE