首页

52二倍角的正弦余弦正切公式课时检测(附解析新人教A版必修第一册)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

二倍角的正弦、余弦、正切公式[A级 基础巩固]1.化简=(  )A.1         B.2C.D.-1解析:选B ===2.故选B.2.设sinα=,2π<α<3π,则sin+cos=(  )A.-B.C.D.-解析:选A ∵sinα=,∴=1+sinα=.又2π<α<3π,∴π<<,∴sin+cos=-.3.(多选)下列各式中,值为的是(  )A.2sin15°cos15°B.1-2sin215°C.sin215°+cos215°D.解析:选BD A不符合,2sin15°cos15°=sin30°=;B符合,1-2sin215°=cos30°=;C不符合,sin215°+cos215°=1;D符合,=·=·tan30°=.故选B、D.7 4.若sin=,则sin2θ=(  )A.B.C.D.±解析:选C 若sin=,则sin=-,∴sin2θ=cos=1-2sin2=1-2×=.5.(2021·湖北省襄阳市月考)若cosα=-,α是第三象限角,则=(  )A.-B.C.2D.-2解析:选A ∵cosα=-,α是第三象限角,∴sinα=-,∴====-.6.(2021·吉林五地六校高一月考)4cos50°-tan40°=________.解析:4cos50°-tan40°=======.答案:7 7.若tan=,则tan2α+=________.解析:由tan==,可求得tanα=,则tan2α+=+===2.答案:28.等腰三角形一个底角的余弦为,那么这个三角形顶角的正弦值为________.解析:设A是等腰△ABC的顶角,则cosB=,sinB===.所以sinA=sin(180°-2B)=sin2B=2sinBcosB=2××=.答案:9.已知α为第二象限角,且sinα=,求的值.解:原式==.因为α为第二象限角,且sinα=,所以cosα=-,sinα+cosα≠0,所以原式==-.10.已知α,β均为锐角,且tanα=7,cosβ=,求α+2β的值.解:∵β为锐角,且cosβ=,7 ∴sinβ=.∴tanβ=,tan2β===.∴0<2β<,0<α+2β<π,又tan(α+2β)===-1,∴α+2β=.[B级 综合运用]11.若tan·cos=sin-msin,则实数m的值为(  )A.2B.C.2D.3解析:选A 由tancos=sin-msin得,msincos=sincos-cos·sin,因此msin=sin=sin,∴m=,即m=2,故选A.12.在△ABC中,若sinBsinC=cos2,则△ABC是(  )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形解析:选B 由sinBsinC=cos2得sinBsinC=,∴2sinBsinC=1+cosA,∴2sinBsinC=1+cos[π-(B+C)]=1-cos(B+C),∴2sinBsinC=1-cosBcosC+sinBsinC,∴cosBcosC+sinBsinC=1,∴cos(B-C)=1.又∵-180°<B-C<180°,∴B-C=0°,7 ∴B=C,∴△ABC是等腰三角形.13.已知角α,β为锐角,且1-cos2α=sinαcosα,tan(β-α)=,则tanα=________,β=________.解析:由1-cos2α=sinαcosα,得1-(1-2sin2α)=sinαcosα,即2sin2α=sinαcosα.∵α为锐角,∴sinα≠0,∴2sinα=cosα,即tanα=.法一:由tan(β-α)===,得tanβ=1.∵β为锐角,∴β=.法二:tanβ=tan[(β-α)+α]===1.∵β为锐角,∴β=.答案: 14.(2021·北京东城高一质检)在平面直角坐标系xOy中,角α的顶点与坐标原点O重合,始边与x轴的非负半轴重合,它的终边过点P,以角α的终边为始边,逆时针旋转得到角β.(1)求tanα的值;(2)求cos(α+β)的值.解:(1)∵角α的顶点与坐标原点O重合,始边与x轴的非负半轴重合,它的终边过点P,7 ∴tanα==-.(2)以角α的终边为始边,逆时针旋转得到角β,∴β=α+.易得cosα=-,sinα=,∴sin2α=2sinαcosα=-,cos2α=2cos2α-1=-.∴cos(α+β)=cos=cos2αcos-sin2αsin=(cos2α-sin2α)=.[C级 拓展探究]15.(2021·山东烟台高一月考)某学习小组在一次研究性学习中发现,以下三个式子的值都等于同一个常数.cos215°+cos215°-sin15°sin15°;cos280°+cos2(-50°)-sin80°sin(-50°);cos2170°+cos2(-140°)-sin170°sin(-140°).(1)求出这个常数;(2)结合(1)的结果,将该小组的发现推广为一个三角恒等式,并证明你的结论.解:(1)cos215°+cos215°-sin15°·sin15°=2cos215°-sin215°=1+cos30°-(1-cos30°)=1+-×=.(2)推广:当α+β=30°时,cos2α+cos2β-sinαsinβ=.证明:∵α+β=30°,∴β=30°-α,cos2α+cos2β-sinαsinβ=cos2α+cos2(30°-α)-sinαsin(30°-α)=cos2α+-sinα·7 =cos2α+cos2α+cosαsinα+sin2α-cosαsinα+sin2α=cos2α+sin2α=.7

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-01-17 11:00:08 页数:7
价格:¥3 大小:65.50 KB
文章作者:随遇而安

推荐特供

MORE