首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】高考数学 第三篇 第2讲 导数的应用(一)限时训练 新人教A版
【创新设计】高考数学 第三篇 第2讲 导数的应用(一)限时训练 新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第2讲导数的应用(一)A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2022·石景山模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( ).A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)解析 由条件得h′(x)=2+=≥0在(1,+∞)上恒成立,即k≥-2x2在(1,+∞)上恒成立,所以k∈(-2,+∞).答案 A2.(2022·郑州检测)函数f(x)=(4-x)ex的单调递减区间是( ).A.(-∞,4)B.(-∞,3)C.(4,+∞)D.(3,+∞)解析 f′(x)=ex+(4-x)·ex=ex(3-x),令f′(x)<0,由于ex>0,∴3-x<0,解得x>3.答案 D3.(2022·安庆模拟)下列函数中,在(0,+∞)内为增函数的是( ).A.f(x)=sin2xB.f(x)=xexC.f(x)=x3-xD.f(x)=-x+lnx解析 sin2x=2sinxcosx,(sin2x)′=2(cos2x-sin2x),在(0,+∞)不恒大于零;(x3-x)′=3x2-1,在(0,+∞)不恒大于零;(-x+lnx)′=-1+在(0,+∞)不恒大于零;(xex)′=ex+xex,当x∈(0,+∞)时ex+xex>0,故选B.答案 B4.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为( ).A.{x|x>0}B.{x|x<0}C.{x|x<-1或x>1}D.{x|x<-1或0<x<1}解析 构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x7\n)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数,又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.答案 A二、填空题(每小题5分,共10分)5.函数y=x-2sinx在[0,π]上的递增区间是________.解析 y′=1-2cosx,令1-2cosx≥0,得cosx≤,解得2kπ+≤x≤2kπ+π,k∈R,又0≤x≤π,∴≤x≤π.答案 6.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为________.解析 设切点坐标为(x0,y0)又y′=,由已知条件解得a=2.答案 2三、解答题(共25分)7.(12分)设函数f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的极值点,求函数g(x)=ex·f(x)的单调区间.解 f′(x)=3ax2-6x=3x(ax-2).因为x=2是函数y=f(x)的极值点.所以f′(2)=0,即6(2a-2)=0,因此a=1,经验证,当a=1时,x=2是函数f(x)的极值点,所以g(x)=ex(x3-3x2),g′(x)=ex(x3-3x2+3x2-6x)=ex(x3-6x)=x(x+)(x-)ex.因为ex>0,所以y=g(x)的单调增区间是(-,0)和(,+∞);单调减区间是(-∞,-)和(0,).8.(13分)已知函数f(x)=x3+ax2-x+c,且a=f′.(1)求a的值;(2)求函数f(x)的单调区间;(3)设函数g(x)=(f(x)-x3)·ex,若函数g(x)在x∈[-3,2]上单调递增,求实数c的取值范围.解 (1)由f(x)=x3+ax2-x+c,得f′(x)=3x2+2ax-1.7\n当x=时,得a=f′=3×2+2a×-1,解之,得a=-1.(2)由(1)可知f(x)=x3-x2-x+c.则f′(x)=3x2-2x-1=3(x-1),列表如下:x-1(1,+∞)f′(x)+0-0+f(x)极大值·极小值所以f(x)的单调递增区间是(-∞,-)和(1,+∞);f(x)的单调递减区间是.(3)函数g(x)=(f(x)-x3)·ex=(-x2-x+c)·ex,有g′(x)=(-2x-1)ex+(-x2-x+c)ex=(-x2-3x+c-1)ex,因为函数g(x)在x∈[-3,2]上单调递增,所以h(x)=-x2-3x+c-1≥0在x∈[-3,2]上恒成立.只要h(2)≥0,解得c≥11,所以c的取值范围是[11,+∞).探究提高 利用导数研究函数单调性的一般步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数y=f(x)满足f(4-x)=f(x),(x-2)·f′(x)<0,若x1<x2且x1+x2>4,则( ).A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)与f(x2)的大小不确定7\n解析 ∵f(4-x)=f(x),∴函数f(x)的图象关于直线x=2对称,由(x-2)f′(x)<0可得函数f(x)在(-∞,2)上单调递增,在(2,+∞)上单调递减,∴当x2>x1>2时,f(x1)>f(x2);当x2>2>x1时,∵x1+x2>4,∴x2>4-x1>2,∴f(4-x1)=f(x1)>f(x2),综上,f(x1)>f(x2),故选B.答案 B2.已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数y=f(x)是周期函数;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中真命题的个数有( ).A.4B.3C.2D.1解析 依题意得,函数f(x)不可能是周期函数,因此①不正确;当x∈(0,2)时,f′(x)<0,因此函数f(x)在[0,2]上是减函数,②正确;当x∈[-1,t]时,f(x)的最大值是2,依题意,结合函数f(x)的可能图象形状分析可知,此时t的最大值是5,因此③不正确;注意到f(2)的值不明确,结合图形分析可知,将函数f(x)的图象向下平移a(1<a<2)个单位后相应曲线与x轴的交点个数不确定,因此④不正确.综上所述,选D.答案 D二、填空题(每小题5分,共10分)3.函数f(x)=x(a>0)的单调递减区间是________.解析 由ax-x2≥0(a>0),解得0≤x≤a,即函数f(x)的定义域为[0,a],f′(x)==,由f′(x)<0解得x≥,因此f(x)的单调递减区间是.答案 4.已知函数y=-x3+bx2-(2b+3)x+2-b在R上不是单调减函数,则b的取值范围是________.解析 y′=-x2+2bx-(2b+3),要使原函数在R上单调递减,应有y′≤0恒成立,∴7\nΔ=4b2-4(2b+3)=4(b2-2b-3)≤0,∴-1≤b≤3,故使该函数在R上不是单调减函数的b的取值范围是b<-1或b>3.答案 (-∞,-1)∪(3,+∞)三、解答题(共25分)5.(12分)已知函数g(x)=+lnx在[1,+∞)上为增函数,且θ∈(0,π),f(x)=mx--lnx,m∈R.(1)求θ的值;(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围.解 (1)由题意得,g′(x)=-+≥0在[1,+∞)上恒成立,即≥0.∵θ∈(0,π),∴sinθ>0,故sinθ·x-1≥0在[1,+∞)上恒成立,只需sinθ·1-1≥0,即sinθ≥1,只有sinθ=1.结合θ∈(0,π),得θ=.(2)由(1),得f(x)-g(x)=mx--2lnx,∴′=.∵f(x)-g(x)在其定义域内为单调函数,∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等价于m(1+x2)≥2x,即m≥,而=≤1,∴m≥1.mx2-2x+m≤0等价于m(1+x2)≤2x,即m≤在[1,+∞)上恒成立.而∈(0,1],∴m≤0.综上,m的取值范围是(-∞,0]∪[1,+∞).6.(13分)设函数f(x)=lnx+在内有极值.7\n(1)求实数a的取值范围;(2)若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-.注:e是自然对数的底数.(1)解 易知函数f(x)的定义域为(0,1)∪(1,+∞),f′(x)=-==.由函数f(x)在内有极值,可知方程f′(x)=0在内有解,令g(x)=x2-(a+2)x+1=(x-α)(x-β).不妨设0<α<,则β>e,又g(0)=1>0,所以g=-+1<0,解得a>e+-2.(2)证明 由(1)知f′(x)>0⇔0<x<α或x>β,f′(x)<0⇔α<x<1或1<x<β,所以函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减.由x1∈(0,1)得f(x1)≤f(α)=lnα+,由x2∈(1,+∞)得f(x2)≥f(β)=lnβ+,所以f(x2)-f(x1)≥f(β)-f(α).由(1)易知α·β=1,α+β=a+2,所以f(β)-f(α)=lnβ-ln+a=2lnβ+a·=2lnβ+a·=2lnβ+β-.记h(β)=2lnβ+β-(β>e),则h′(β)=+1+=2>0,所以函数h(β)在(e,+∞)上单调递增,所以f(x2)-f(x1)≥h(β)>h(e)=2+e-.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.7\n7
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】(浙江专用)2022届高考数学总复习 第3篇 第3讲 导数的综合应用限时训练 理
【创新设计】(浙江专用)2022届高考数学总复习 第3篇 第1讲 导数及导数的计算限时训练 理
【创新设计】高考数学 第十篇 第2讲 排列与组合限时训练 新人教A版
【创新设计】高考数学 第十二篇 第5讲 复数限时训练 新人教A版
【创新设计】高考数学 第九篇 第4讲 椭圆限时训练 新人教A版
【创新设计】高考数学 第九篇 第2讲 圆的方程限时训练 新人教A版
【创新设计】高考数学 第三篇 第4讲 定积分的概念与微积分基本定理限时训练 新人教A版
【创新设计】高考数学 第三篇 第1讲 变化率与导数、导数的运算限时训练 新人教A版
【创新设计】2022届高考数学一轮总复习 第三篇 第3讲 导数的应用(二) 理 湘教版
【创新设计】2022届高考数学一轮总复习 第三篇 第2讲 导数的应用(一) 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:36:24
页数:7
价格:¥3
大小:72.29 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划