首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】高考数学 第九篇 第4讲 椭圆限时训练 新人教A版
【创新设计】高考数学 第九篇 第4讲 椭圆限时训练 新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/9
2
/9
剩余7页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第4讲椭圆A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=( ).A.B.C.D.4解析 a2=4,b2=1,所以a=2,b=1,c=,不妨设F1为左焦点,P在x轴上方,则F1(-,0),设P(-,m)(m>0),则+m2=1,解得m=,所以|PF1|=,根据椭圆定义:|PF1|+|PF2|=2a,所以|PF2|=2a-|PF1|=2×2-=.答案 A2.(2022·江西)椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为( ).A.B.C.D.-2解析 因为A,B为左、右顶点,F1,F2为左、右焦点,所以|AF1|=a-c,|F1F2|=2c,|F1B|=a+c.又因为|AF1|,|F1F2|,|F1B|成等比数列,所以(a-c)(a+c)=4c2,即a2=5c2.所以离心率e==,故选B.答案 B3.(2022·嘉兴测试)已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是( ).A.B.C.∪D.∪4\n解析 椭圆标准方程为x2+=1.当m>1时,e2=1-∈,解得m>;当0<m<1时,e2==1-m∈,解得0<m<,故实数m的取值范围是∪.答案 C4.(2022·温州测试)已知椭圆+=1(a>b>0)的中心为O,左焦点为F,A是椭圆上的一点.·=0且·=2,则该椭圆的离心率是( ).A.B.C.3-D.3+解析 因为·=0,且·=·(-),所以·=2,所以||=||=c,所以||=c,且∠AOF=45°,设椭圆的右焦点是F′,在△AOF′中,由余弦定理可得AF′=c,由椭圆定义可得AF+AF′=c+c=2a,即(1+)c=2a,故离心率e===.答案 A二、填空题(每小题5分,共10分)5.(2022·青岛模拟)设椭圆+=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为________.解析 抛物线y2=8x的焦点为(2,0),∴m2-n2=4①,e==,∴m=4,代入①得,n2=12,∴椭圆方程为+=1.答案 +=16.(2022·佛山模拟)在等差数列{an}中,a2+a3=11,a2+a3+a4=21,则椭圆C:+=1的离心率为________.解析 由题意,得a4=10,设公差为d,则a3+a2=(10-d)+(10-2d)=20-3d=11,∴d=3,∴a5=a4+d=13,a6=a4+2d=16>a5,∴e==.4\n答案 三、解答题(共25分)7.(12分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,·=0,若椭圆的离心率等于.(1)求直线AO的方程(O为坐标原点);(2)直线AO交椭圆于点B,若三角形ABF2的面积等于4,求椭圆的方程.解 (1)由·=0,知AF2⊥F1F2,∵椭圆的离心率等于,∴c=a,可得b2=a2.设椭圆方程为x2+2y2=a2.设A(x0,y0),由·=0,知x0=c,∴A(c,y0),代入椭圆方程可得y0=a,∴A,故直线AO的斜率k=,直线AO的方程为y=x.(2)连接AF1,BF1,AF2,BF2,由椭圆的对称性可知,S△ABF2=S△ABF1=S△AF1F2,∴·2c·a=4.又由c=a,解得a2=16,b2=16-8=8.故椭圆方程为+=1.8.(13分)设F1,F2分别为椭圆C:+=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.(1)求椭圆C的焦距;(2)如果=2,求椭圆C的方程.解 (1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c=2,故c=2.所以椭圆C的焦距为4.4\n(2)设A(x1,y1),B(x2,y2),由=2及l的倾斜角为60°,知y1<0,y2>0,直线l的方程为y=(x-2).由消去x,整理得(3a2+b2)y2+4b2y-3b4=0.解得y1=,y2=.因为=2,所以-y1=2y2,即=2·,解得a=3.而a2-b2=4,所以b2=5.故椭圆C的方程为+=1.4B级 能力突破(时间:30分钟 满分:45分)4\n一、选择题(每小题5分,共10分)1.(2022·厦门质检)已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆2+y2=相切于点Q,且=2Q,则椭圆C的离心率等于( ).A.B.C.D.解析 记椭圆的左焦点为F′,圆2+y2=的圆心为E,连接PF′,QE.∵|EF|=|OF|-|OE|=c-=,=2Q,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.答案 A2.(2022·山东)已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( ).A.+=1B.+=1C.+=1D.+=1\n解析 因为椭圆的离心率为,所以e==,c2=a2,c2=a2=a2-b2,所以b2=a2,即a2=4b2.双曲线的渐近线方程为y=±x,代入椭圆方程得+=1,即+==1,所以x2=b2,x=±b,y2=b2,y=±b,则在第一象限双曲线的渐近线与椭圆C的交点坐标为,所以四边形的面积为4×b×b=b2=16,所以b2=5,所以椭圆方程为+=1.答案 D二、填空题(每小题5分,共10分)3.(2022·泰安一模)F1,F2为双曲线C:-=1(a>0,b>0)的焦点,A,B分别为双曲线的左、右顶点,以F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且满足∠MAB=30°,则该双曲线的离心率为________.解析 如图,以F1F2为直径的圆为x2+y2=c2,双曲线的渐近线为y=x.由得M(a,b),∴△MAB为直角三角形.∴在Rt△MAB中,tan30°===.∴=.∴e===.答案 4.如图,∠OFB=,△ABF的面积为2-,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为________.解析 设标准方程为+=1(a>b>0),由题可知,|OF|=c,|OB|=b,∴|BF|=a,∵∠OFB=,∴=,a=2b.S△ABF=·|AF|·|BO|=(a-c)·b\n=(2b-b)b=2-,∴b2=2,∴b=,∴a=2,∴椭圆的方程为+=1.答案 +=1三、解答题(共25分)5.(12分)(2022·南京二模)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.(1)解 由题意知,b==.因为离心率e==,所以==.所以a=2.所以椭圆C的方程为+=1.(2)证明 由题意可设M,N的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=x+1,①直线QN的方程为y=x+2.②法一 联立①②解得x=,y=,即T.由+=1,可得x=8-4y.因为2+2=====1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.\n法二 设T(x,y),联立①②解得x0=,y0=.因为+=1,所以2+2=1.整理得+=(2y-3)2,所以+-12y+8=4y2-12y+9,即+=1.所以点T坐标满足椭圆C的方程,即点T在椭圆C上.6.(13分)(2022·重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.解 (1)如图,设所求椭圆的标准方程为+=1(a>b>0),右焦点为F2(c,0).因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2为直角,因此|OA|=|OB2|,得b=.结合c2=a2-b2得4b2=a2-b2,故a2=5b2,c2=4b2,所以离心率e==.在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2=·|B1B2|·|OA|=|OB2|·|OA|=·b=b2.由题设条件S△AB1B2=4得b2=4,从而a2=5b2=20.因此所求椭圆的标准方程为:+=1.(2)由(1)知B1(-2,0),B2(2,0).由题意知直线l的倾斜角不为0,故可设直线l的方程为x=my-2.代入椭圆方程得(m2+5)y2-4my-16=0.设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,\n因此y1+y2=,y1·y2=-,又=(x1-2,y1),=(x2-2,y2),所以·=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=--+16=-,由PB2⊥QB2,得·=0,即16m2-64=0,解得m=±2.所以满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】高考数学 第十二篇 第5讲 复数限时训练 新人教A版
【创新设计】高考数学 第十一篇 第4讲 古典概型限时训练 新人教A版
【创新设计】高考数学 第六篇 第4讲 数列求和限时训练 新人教A版
【创新设计】高考数学 第九篇 第8讲 曲线与方程限时训练 新人教A版
【创新设计】高考数学 第九篇 第7讲 直线与圆锥曲线的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第5讲 双曲线限时训练 新人教A版
【创新设计】高考数学 第九篇 第3讲 直线与圆、圆与圆的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第2讲 圆的方程限时训练 新人教A版
【创新设计】高考数学 第九篇 第1讲 直线方程和两直线的位置关系限时训练 新人教A版
【创新设计】2022届高考数学一轮总复习 第九篇 第4讲 椭圆 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:36:22
页数:9
价格:¥3
大小:133.32 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划