首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】高考数学 第九篇 第5讲 双曲线限时训练 新人教A版
【创新设计】高考数学 第九篇 第5讲 双曲线限时训练 新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/8
2
/8
剩余6页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第5讲双曲线A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.已知双曲线中心在原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则双曲线的方程是( ).A.-y2=1B.x2-=1C.-=1D.-=1解析 设双曲线的标准方程为-=1(a>0,b>0),由PF1的中点为(0,2)知,PF2⊥x轴,P(,4),即=4,b2=4a,∴5-a2=4a,a=1,b=2,∴双曲线方程为x2-=1.答案 B2.(2022·湖南)已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( ).A.-=1B.-=1C.-=1D.-=1解析 不妨设a>0,b>0,c=.据题意,2c=10,∴c=5.①双曲线的渐近线方程为y=±x,且P(2,1)在C的渐近线上,∴1=.②由①②解得b2=5,a2=20,故正确选项为A.答案 A3.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为( ).A.-2B.-C.1D.04\n解析 设点P(x,y),其中x≥1.依题意得A1(-1,0),F2(2,0),则有=x2-1,y2=3(x2-1),·=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=42-,其中x≥1.因此,当x=1时,·取得最小值-2,选A.答案 A4.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( ).A.3B.2C.D.解析 设双曲线的方程为-=1,椭圆的方程为+=1,由于M,O,N将椭圆长轴四等分,所以a2=2a1,又e1=,e2=,所以==2.答案 B二、填空题(每小题5分,共10分)5.已知双曲线C1:-=1(a>0,b>0)与双曲线C2:-=1有相同的渐近线,且C1的右焦点为F(,0),则a=________,b=________.解析 与双曲线-=1有共同渐近线的双曲线的方程可设为-=λ(λ>0),即-=1.由题意知c=,则4λ+16λ=5⇒λ=,则a2=1,b2=4.又a>0,b>0,故a=1,b=2.答案 1 26.(2022·江苏)在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为________.解析 由题意得m>0,∴a=,b=.∴c=,由e==,得=5,解得m=2.答案 24\n三、解答题(共25分)7.(12分)中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.解 (1)由已知:c=,设椭圆长、短半轴长分别为a,b,双曲线半实、虚轴长分别为m,n,则解得a=7,m=3.∴b=6,n=2.∴椭圆方程为+=1,双曲线方程为-=1.(2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,所以|PF1|=10,|PF2|=4.又|F1F2|=2,∴cos∠F1PF2===.8.(13分)(2022·合肥联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:·=0;(3)求△F1MF2的面积.(1)解 ∵e=,∴设双曲线方程为x2-y2=λ.又∵双曲线过(4,-)点,∴λ=16-10=6,∴双曲线方程为x2-y2=6.(2)证明 法一 由(1)知a=b=,c=2,∴F1(-2,0),F2(2,0),∴kMF1=,kMF2=,∴kMF1·kMF2==,又点(3,m)在双曲线上,∴m2=3,∴kMF1·kMF2=-1,MF1⊥MF2,·=0.4\n法二 ∵=(-3-2,-m),=(2-3,-m),∴·=(3+2)(3-2)+m2=-3+m2.∵M在双曲线上,∴9-m2=6,∴m2=3,∴·=0.(3)解 ∵在△F1MF2中,|F1F2|=4,且|m|=,∴S△F1MF2=·|F1F2|·|m|=×4×=6.4B级 能力突破(时间:30分钟 满分:45分)4\n一、选择题(每小题5分,共10分)1.(2022·北京西城模拟)过双曲线-=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=的切线,切点为E,延长FE交双曲线右支于点P,若+=2,则双曲线的离心率为( ).A.B.C.D.解析 设双曲线的右焦点为A,则=-,故+=-==2,即OE=AP.所以E是PF的中点,所以AP=2OE=2×=a.所以PF=3a.在Rt△APF中,a2+(3a)2=(2c)2,即10a2=4c2,所以e2=,即离心率为e==,选C.答案 C2.(2022·福建)已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A.B.4C.3D.5解析 易求得抛物线y2=12x的焦点为(3,0),故双曲线-=1的右焦点为(3,0),即c=3,故32=4+b2,∴b2=5,∴双曲线的渐近线方程为y=±x,∴双曲线的右焦点到其渐近线的距离为=.答案 A二、填空题(每小题5分,共10分)3.(2022·临沂联考)已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围为________.解析 由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=\n,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2.答案 (1,2)4.(2022·湖北)如图,双曲线-=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则(1)双曲线的离心率e=________;(2)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=________.解析 (1)由题意可得a=bc,∴a4-3a2c2+c4=0,∴e4-3e2+1=0,∴e2=,∴e=.(2)设sinθ=,cosθ=,====e2-=.答案 (1) (2)三、解答题(共25分)5.(12分)已知双曲线-=1(a>0,b>0)的两个焦点分别为F1,F2,点P在双曲线上,且PF1⊥PF2,|PF1|=8,|PF2|=6.(1)求双曲线的方程;(2)设过双曲线左焦点F1的直线与双曲线的两渐近线交于A,B两点,且=2,求此直线方程.解 (1)由题意知,在Rt△PF1F2中,|F1F2|=,即2c==10,所以c=5.由椭圆的定义,知2a=|PF1|-|PF2|=8-6=2,即a=1.\n所以b2=c2-a2=24,故双曲线的方程为x2-=1.(2)左焦点为F1(-5,0),两渐近线方程为y=±2x.由题意得过左焦点的该直线的斜率存在.设过左焦点的直线方程为y=k(x+5),则与两渐近线的交点为和.由=2,得=2或者=2,解得k=±.故直线方程为y=±(x+5).6.(13分)(2022·江西)P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.解 (1)由点P(x0,y0)(x0≠±a)在双曲线-=1上,有-=1.由题意有·=,可得a2=5b2,c2=a2+b2=6b2,e==.(2)联立得4x2-10cx+35b2=0.设A(x1,y1),B(x2,y2),则①设=(x3,y3),=λ+,即又C为双曲线上一点,即x-5y=5b2,有\n(λx1+x2)2-5(λy1+y2)2=5b2.化简得λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2.②又A(x1,y1),B(x2,y2)在双曲线上,所以x-5y=5b2,x-5y=5b2.由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,②式可化为λ2+4λ=0,解得λ=0或λ=-4.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】(浙江专用)2022届高考数学总复习 第9篇 第6讲 双曲线限时训练 理
【创新设计】高考数学 第十二篇 第5讲 复数限时训练 新人教A版
【创新设计】高考数学 第六篇 第4讲 数列求和限时训练 新人教A版
【创新设计】高考数学 第九篇 第8讲 曲线与方程限时训练 新人教A版
【创新设计】高考数学 第九篇 第7讲 直线与圆锥曲线的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第4讲 椭圆限时训练 新人教A版
【创新设计】高考数学 第九篇 第3讲 直线与圆、圆与圆的位置关系限时训练 新人教A版
【创新设计】高考数学 第九篇 第2讲 圆的方程限时训练 新人教A版
【创新设计】高考数学 第九篇 第1讲 直线方程和两直线的位置关系限时训练 新人教A版
【创新设计】2022届高考数学一轮总复习 第九篇 第5讲 双曲线 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:36:22
页数:8
价格:¥3
大小:80.82 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划