首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【创新设计】高考数学 第八篇 第6讲 空间向量及其运算限时训练 新人教A版
【创新设计】高考数学 第八篇 第6讲 空间向量及其运算限时训练 新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第6讲空间向量及其运算A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c,共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.其中正确命题的个数是( ).A.0B.1C.2D.3解析 a与b共线,a,b所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任两向量a,b都共面,故②错误;三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故④不正确,综上可知四个命题中正确的个数为0,故选A.答案 A2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=( ).A.-4B.-2C.4D.2解析 ∵a=(1,1,x),b=(1,2,1),c=(1,1,1),∴c-a=(0,0,1-x),2b=(2,4,2).∴(c-a)·(2b)=2(1-x)=-2,∴x=2.答案 D3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( ).A.{a,a+b,a-b}B.{b,a+b,a-b}C.{c,a+b,a-b}D.{a+b,a-b,a+2b}解析 若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.6\n答案 C4.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=,则cos〈,〉的值为( ).A.0 B.C. D.解析 设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,·=a·(c-b)=a·c-a·b=|a||c|-|a||b|=0,∴cos〈,〉=0.答案 A二、填空题(每小题5分,共10分)5.在下列条件中,使M与A、B、C一定共面的是________.①=2--;②=++;③++=0;④+++=0;解析 ∵++=0,∴=--,则、、为共面向量,即M、A、B、C四点共面.答案 ③6.在空间四边形ABCD中,·+·+·=________.解析 如图,设=a,=b,=c,·+·+·=a·(c-b)+b·(a-c)+c·(b-a)=0.答案 0三、解答题(共25分)7.(12分)已知A、B、C三点不共线,对平面ABC外的任一点O,若点M满足=(++).6\n(1)判断、、三个向量是否共面;(2)判断点M是否在平面ABC内.解 (1)由已知++=3,∴-=(-)+(-),即=+=--,∴,,共面.(2)由(1)知,,,共面且基线过同一点M,∴四点M,A,B,C共面,从而点M在平面ABC内.8.(13分)如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,(1)试证:A1、G、C三点共线;(2)试证:A1C⊥平面BC1D;(3)求点C到平面BC1D的距离.(1)证明 =++=++,可以证明:=(++)=,∴∥,即A1、G、C三点共线.(2)证明 设=a,=b,=c,则|a|=|b|=|c|=a,且a·b=b·c=c·a=0,∵=a+b+c,=c-a,∴·=(a+b+c)·(c-a)=c2-a2=0,∴⊥,即CA1⊥BC1,同理可证:CA1⊥BD,因此A1C⊥平面BC1D.(3)解 ∵=a+b+c,∴2=a2+b2+c2=3a2,即||=a,因此||=a.即C到平面BC1D的距离为a.B级 能力突破(时间:30分钟 满分:45分)6\n一、选择题(每小题5分,共10分)1.(2022·海淀月考)以下四个命题中正确的是( ).A.空间的任何一个向量都可用其他三个向量表示B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底C.△ABC为直角三角形的充要条件是·=0D.任何三个不共线的向量都可构成空间向量的一组基底解析 若a+b、b+c、c+a为共面向量,则a+b=λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ,μ不可能同时为1,设μ≠1,则a=b+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.答案 B2.如图所示,在长方体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是( ).A.-a+b+cB.a+b+cC.-a-b+cD.a-b+c解析 =+=+(-)=c+(b-a)=-a+b+c.答案 A二、填空题(每小题5分,共10分)3.已知在一个60°的二面角的棱上,如图有两个点A,B,AC,BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4cm,AC=6cm,BD=8cm,则CD的长为________.解析 设=a,=b,=c,由已知条件|a|=8,|b|=4,|c|=6,〈a,b〉=90°,〈b,c〉=90°,〈a,c〉=60°||2=|++|2=|-c+b+a|2=a2+b2+c2+2a·b-2a·c-2b·c=68,6\n则||=2.答案 2cm4.如图,空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA与BC所成角的余弦值等于________.解析 设=a,=b,=c.OA与BC所成的角为θ,·=a(c-b)=a·c-a·b=a·(a+)-a·(a+)=a2+a·-a2-a·=24-16.∴cosθ===.答案 三、解答题(共25分)5.(12分)如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM∶GA=1∶3.求证:B、G、N三点共线.证明 设=a,=b,=c,则=+=+=-a+(a+b+c)=-a+b+c,=+=+(+)=-a+b+c=.∴∥,即B、G、N三点共线.6.(13分)如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB、AD、CD的中点,计算:(1)·;(2)·;(3)EG的长;(4)异面直线AG与CE所成角的余弦值.6\n解 设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,(1)==c-a,=-a,=b-c,·=·(-a)=a2-a·c=,(2)·=(c-a)·(b-c)=(b·c-a·b-c2+a·c)=-;(3)=++=a+b-a+c-b=-a+b+c,||2=a2+b2+c2-a·b+b·c-c·a=,则||=.(4)=b+c,=+=-b+a,cos〈,〉==-,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【创新设计】(浙江专用)2022届高考数学总复习 第8篇 第6讲 空间向量及其运算限时训练 理
【创新设计】高考数学 第八篇 第8讲 立体几何中的向量方法(二)限时训练 新人教A版
【创新设计】高考数学 第八篇 第5讲 直线、平面垂直的判定及其性质限时训练 新人教A版
【创新设计】高考数学 第八篇 第4讲 直线、平面平行的判定及其性质限时训练 新人教A版
【创新设计】高考数学 第八篇 第3讲 空间点、直线、平面之间的位置关系限时训练 新人教A版
【创新设计】高考数学 第八篇 第2讲 空间几何体的表面积与体积限时训练 新人教A版
【创新设计】高考数学 第八篇 第1讲 空间几何体的结构、三视图和直观图限时训练 新人教A版
【创新设计】高考数学 第五篇 第2讲 平面向量的基本定理及向量坐标运算限时训练 新人教A版
【创新设计】高考数学 第五篇 第1讲 平面向量的概念及其线性运算限时训练 新人教A版
【创新设计】2022届高考数学一轮总复习 第八篇 第6讲 空间中向量的概念和运算 理 湘教版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:36:18
页数:6
价格:¥3
大小:124.81 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划