首页

【创新设计】(浙江专用)2022届高考数学总复习 第8篇 第4讲 直线、平面平行的判定及其性质限时训练 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

第4讲 直线、平面平行的判定及其性质分层A级 基础达标演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是(  ).A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析 l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是(  ).A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析 充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.答案 D3.(2022·北京模拟)以下命题中真命题的个数是(  ).①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,则a∥α;④若直线a∥b,b⊂α,则a平行于平面α内的无数条直线.A.1B.2C.3D.4解析 命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③直线a可以在平面α内,不正确;命题④正确.答案 A4.(2022·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是(  ).A.若m、n都平行于平面α,则m、n一定不是相交直线;6\nB.若m、n都垂直于平面α,则m、n一定是平行直线;C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥β;D.若m、n在平面α内的射影互相平行,则m、n互相平行.解析 A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案 B二、填空题(每小题5分,共10分)5.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析 过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 66.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析 ①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案 ①③三、解答题(共25分)7.(12分)(2022·山东卷)如图,在四棱台ABCDA1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.证明 (1)因为D1D⊥平面ABCD,且BD⊂平面ABCD,所以D1D⊥BD.又因为AB=2AD,∠BAD=60°,在△ABD中,由余弦定理得BD2=AD2+AB2-2AD·ABcos60°=3AD2,所以AD2+BD2=AB2,6\n因此AD⊥BD.又AD∩D1D=D,所以BD⊥平面ADD1A1.又AA1⊂平面ADD1A1,故AA1⊥BD.(2)如图,连结AC,A1C1,设AC∩BD=E,连结EA1,因为四边形ABCD为平行四边形,所以EC=AC.由棱台定义及AB=2AD=2A1B1知A1C1∥EC且A1C1=EC,所以四边形A1ECC1为平行四边形,因此CC1∥EA1.又因为EA1⊂平面A1BD,CC1⊄平面A1BD,所以CC1∥平面A1BD.8.(13分)(2022·安徽卷)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体BDEF的体积.(1)证明 设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH綉AB.又EF綉AB,∴EF綉GH.∴四边形EFHG为平行四边形.∴EG∥FH,而EG⊂平面EDB,∴FH∥平面EDB.(2)证明 由四边形ABCD为正方形,有AB⊥BC.又EF∥AB,∴EF⊥BC.而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH.∴AB⊥FH.又BF=FC,H为BC的中点,∴FH⊥BC.∴FH⊥平面ABCD.∴FH⊥AC.又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.6\n(3)解 ∵EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF.∴BF为四面体BDEF的高.又BC=AB=2,∴BF=FC=.VB-DEF=××1××=.分层B级 创新能力提升1.(2022·蚌埠模拟)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(  ).A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析 对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B2.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  ).A.①③B.②③C.①④D.②④解析 对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.答案 C6\n3.如图所示,在正四棱柱ABCDA1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.解析 由题意,HN∥面B1BDD1,FH∥面B1BDD1.∵HN∩FH=H,∴面NHF∥面B1BDD1.∴当M在线段HF上运动时,有MN∥面B1BDD1.答案 M∈线段HF4.对于平面M与平面N,有下列条件:①M、N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).解析 由面面平行的判定定理及性质定理知,只有②⑤能判定M∥N.答案 ②⑤5.如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.解 存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.6.(2022·汕头模拟)一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点).6\n(1)求证:MN∥平面CDEF;(2)求多面体ACDEF的体积.解 由三视图可知:AB=BC=BF=2,DE=CF=2,∠CBF=.(1)证明:取BF的中点G,连接MG、NG,由M、N分别为AF、BC的中点可得,NG∥CF,MG∥EF,∴平面MNG∥平面CDEF,又MN⊂平面MNG,∴MN∥平面CDEF.(2)取DE的中点H.∵AD=AE,∴AH⊥DE,在直三棱柱ADEBCF中,平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.∴多面体ACDEF是以AH为高,以矩形CDEF为底面的棱锥,在△ADE中,AH=.S矩形CDEF=DE·EF=4,∴棱锥ACDEF的体积为V=·S矩形CDEF·AH=×4×=.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:32:24 页数:6
价格:¥3 大小:212.71 KB
文章作者:U-336598

推荐特供

MORE