首页

【备考2022】2022高考数学 (真题+模拟新题分类汇编) 统计 文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

统计I1 随机抽样                   17.I1,I2[2022·安徽卷]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲乙745533253385543331006000112233586622110070022233669754428115582090图1-4(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2的值.17.解:(1)设甲校高三年级学生总人数为n,由题意知,=0.05,即n=600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-=.(2)设甲、乙两校样本平均数分别为x1′,x2′,根据样本茎叶图可知,30(x1′-x2′)=30x1′-30x2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5,故x1-x2的估计值为0.5分.3.I1[2022·湖南卷]某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差别,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=(  )A.9B.10C.12D.133.D [解析]根据抽样比例可得=,解得n=13,选D.5.I1[2022·江西卷]总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(  )-12-\n7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08B.07C.02D.015.D [解析]选出来的5个个体编号依次为:08,02,14,07,01.故选D.7.I1,I4[2022·四川卷]某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是(  )图1-4图1-57.A [解析]首先注意,组距为5,排除C,D,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.I2 用样本估计总体                   17.I1,I2[2022·安徽卷]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲乙745533253385543331006000112233586622110070022233669754428115582090-12-\n图1-4(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2的值.17.解:(1)设甲校高三年级学生总人数为n,由题意知,=0.05,即n=600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-=.(2)设甲、乙两校样本平均数分别为x1′,x2′,根据样本茎叶图可知,30(x1′-x2′)=30x1′-30x2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5,故x1-x2的估计值为0.5分.16.I2,K1,K2[2022·北京卷]图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是.(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为.(3)从3月5日开始连续三天的空气质量指数方差最大.12.I2[2022·湖北卷]某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;-12-\n(2)命中环数的标准差为________.12.(1)7 (2)2 [解析]==7,标准差σ==2.16.I2[2022·辽宁卷]为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.16.10 [解析]由已知可设5个班级参加的人数分别为x1,x2,x3,x4,x5,又S2=4,x=7,所以=4,所以(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20,即五个完全平方数之和为20,要使其中一个达到最大,之五个数必须是关于0对称分布的,而9+1+0+1+9=20,也就是(-3)2+(-1)2+02+12+32=20,所以五个班级参加的人数分别为4,6,7,8,10,最大数字为10.5.I2[2022·辽宁卷]某班的全体学生参加英语测试,成绩的频率分布直方图如图1-1,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是(  )图1-1A.45   B.50   C.55   D.605.B [解析]由成绩的频率分布直方图可以得到低于60分的频率为0.3,而低于60分的人数为15人,所以该班的总人数为=50人.图1-919.B1,I2[2022·新课标全国卷Ⅱ]经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130t该产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率.-12-\n19.解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000.当X∈[130,150]时,T=500×130=65000.所以T=(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.10.I2[2022·山东卷]将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示.则7个剩余分数的方差为(  )87794010x91图1-4A.B.C.36D.10.B [解析]由题得91×7=87+90×2+91×2+94+90+x,解得x=4,剩余7个数的方差s2=[(87-91)2+2(90-91)2+2(91-91)2+2(94-91)2]=.5.I2,K2[2022·陕西卷]对一批产品的长度(单位:毫米)进行抽样检测,图1-1为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(  )图1-1A.0.09B.0.20C.0.25D.0.455.D [解析]利用统计图表可知在区间[25,30)上的频率为:1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为:0.04×5=0.2,故所抽产品为二等品的概率为0.25+0.2=0.45.15.I2,K2[2022·天津卷]某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级,若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)-12-\n(x,y,z)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”.求事件B发生的概率.15.解:(1)计算10件产品的综合指标S,如下表:产品编号A1A2A3A4A5A6A7A8A9A10S4463454535其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6.从而可估计该批产品的一等品率为0.6.(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.(ii)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)==.18.I2、I5[2022·新课标全国卷Ⅰ]为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,-12-\ny=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:A药B药60.55689855221.12234678998776543322.1456752103.2从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.6.I2[2022·重庆卷]图1-2是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为(  )1892122793003图1-2A.0.2B.0.4C.0.5D.0.66.B [解析]由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为=0.4,故选B.I3 正态分布                   I4 变量的相关性与统计案例                   19.K1,I4[2022·福建卷]某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图1-4所示的频率分布直方图.-12-\n图1-4(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=P(χ2≥k)0.1000.0500.0100.001k2.7063.8416.63510.82819.解:(1)由已知得,样本中有“25周岁以上组”工人60名,“25周岁以下组”工人40名.所以,样本中日平均生产件数不足60件的工人中,“25周岁以上组”工人有60×0.05=3(人),记为A1,A2,A3;“25周岁以下组”工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100所以得K2===≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.11.I4[2022·福建卷]已知x与y之间的几组数据如下表:x123456-12-\ny021334假设根据上表数据所得线性回归直线方程为=x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是(  )A.>b′,>a′B.>b′,<a′C.<b′,>a′D.<b′,<a′11.C [解析]画出散点图即可,选C.4.I4[2022·湖北卷]四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是(  )A.①②B.②③C.③④D.①④4.D [解析]r为正时正相关,r为负时负相关,r与k符号相同,故k>0时正相关,k<0时负相关.7.I1,I4[2022·四川卷]某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是(  )图1-4图1-57.A [解析]首先注意,组距为5,排除C,D,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.17.I4[2022·重庆卷]从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi-12-\n(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,a=y-bx,其中x,y为样本平均值.线性回归方程也可写为=x+.17.解:(1)由题意知n=10,x=i==8,y=i==2,又lxx=iyi-nxy=184-10×8×2=24,由此得b===0.3,a=y-bx=2-0.3×8=-0.4,故所求回归方程为y=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).I5 单元综合                   17.I5[2022·广东卷]从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)[80,85)[85,90)[90,95)[95,100)频数(个)5102015(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.17.解:18.I2、I5[2022·新课标全国卷Ⅰ]为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?-12-\n图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:A药B药60.55689855221.12234678998776543322.1456752103.2从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好.1.[2022·宝鸡检测]在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是(  )①平均数x≤3;②标准差s≤2;③平均数x≤3且标准差s≤2;④平均数x≤3且极差小于或等于2;⑤众数等于1且极差小于或等于4.A.①②B.③④C.③④⑤D.④⑤1.D [解析]①②③错,④对.若极差等于0或1,在x≤3的条件下显然符合指标,若极差等于2,则有下列可能,(1)0,1,2,(2)1,2,3,(3)2,3,4,(4)3,4,5,(5)4,5,6.在x≤3的条件下,只有(1)(2)(3)成立,符合标准.⑤正确,若众数等于1且极差小于等于4,则最大数不超过5,符合指标,故选D.2.[2022·惠州三调]某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图K39-1所示的茎叶图表示,则甲、乙两名运动员的中位数分别为(  )A.19,13B.13,19C.20,18D.18,20图K39-1-12-\n   图K39-22.A [解析]甲的中位数为19,乙的中位数为13.故选A.3.[2022·青岛一中1月调研]某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x1234所减分数y4.5432.5显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为(  )A.y=0.7x+5.25B.y=-0.6x+5.25C.y=-0.7x+6.25D.y=-0.7x+5.253.D [解析]由题意可知,所减分数y与模拟考试次数x之间为负相关,所以排除A.考试次数的平均数为x=(1+2+3+4)=2.5,所减分数的平均数为y=(4.5+4+3+2.5)=3.5,即直线应该过点(2.5,3.5),代入验证可知直线y=-0.7x+5.25成立,选D.[规律解读]线性回归直线方程过点(x,y)是解决此类问题的关键.4.[2022·长治二中月考]在第29届奥运会上,中国运动员取得了51金、21银、28铜的好成绩,稳居世界金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性公民中有1560名持反对意见,2452名女性公民中有1200人持反对意见,在运用这些数据说明中国的奖牌数与中国进入体育强国有无关系时,用什么方法最有说服力(  )A.平均数与方差B.回归直线方程C.独立性检验D.概率4.C [解析]根据题意,可以列出列联表,计算K2的值,说明金牌数与体育强国的关系,故用独立性检验最有说服力.5.[2022·乌鲁木齐一诊]某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程=0.67x+54.9.零件数x(个)1020304050加工时间y(min)62758189表中有一个数据模糊不清,请你推断出该数据的值为________.5.68 [解析]设遮住部分的数据为m,x==30,由=0.67x+54.9过点(x,y),得y=0.67×30+54.9=75,∴=75,故m=68.-12-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:27:04 页数:12
价格:¥3 大小:526.95 KB
文章作者:U-336598

推荐特供

MORE