首页

【备考2022】2022高考数学 (真题+模拟新题分类汇编) 数列 文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

数列D1 数列的概念与简单表示法                   15.D1,D5[2022·湖南卷]对于E={a1,a2,…,a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x1,x2,…,x100,其中xi1=xi2=…=xik=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0.(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为________.15.2 17 [解析](1)由特征数列的定义可知,子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E的子集P的“特征数列”p1,p2,…,p100满足p1=1,pi+pi+1=1,1≤i≤99”可知子集P的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98”可知子集Q的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q的元素为项数除以6余数为1的项,可知有a1,a7,a13,…,a97,共17项.4.D1[2022·辽宁卷]下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为(  )A.p1,p2B.p3,p4C.p2,p3D.p1,p44.D [解析]因为数列{an}为d>0的数列,所以{an}是递增数列,则p1为真命题.而数列{an+3nd}也是递增数列,所以p4为真命题,故选D.D2 等差数列及等有效期数列前n项和                   19.D2,D4[2022·安徽卷]设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2,求数列{bn}的前n项和Sn.19.解:(1)由题设可得,f′(x)=an-an+1+an+2-an+1sinx-an+2cosx.对任意n∈N*,f′=an-an+1+an+2-an+1=0,即an+1-an=an+2-an+1,故{an}为等差数列.-15-\n由a1=2,a2+a4=8,解得{an}的公差d=1,所以an=2+1·(n-1)=n+1.(2)由bn=2an+=2=2n++2知,Sn=b1+b2+…+bn=2n+2·+=n2+3n+1-.7.D2[2022·安徽卷]设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=(  )A.-6B.-4C.-2D.27.A [解析]设公差为d,则8a1+28d=4a1+8d,即a1=-5d,a7=a1+6d=-5d+6d=d=-2,所以a9=a7+2d=-6.20.M2,D2,D3,D5[2022·北京卷]给定数列a1,a2,…,an,对i=1,2,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai-Bi.(1)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn-1是等比数列;(3)设d1,d2,…,dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列.20.解:(1)d1=2,d2=3,d3=6.(2)证明:因为a1>0,公比q>1,所以a1,a2,…,an是递增数列.因此,对i=1,2,…,n-1,Ai=ai,Bi=ai+1.于是对i=1,2,…,n-1,di=Ai-Bi=ai-ai+1=a1(1-q)qi-1.因此di≠0且=q(i=1,2,…,n-2),即d1,d2,…,dn-1是等比数列.(3)证明:设d为d1,d2,…,dn-1的公差.对1≤i≤n-2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai.又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an-1是递增数列,因此Ai=ai(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<an-1.因此an=B1.所以B1=B2=…=Bn-1=an.所以ai=Ai=Bi+di=an+di.因此对i=1,2,…,n-2都有ai+1-ai=di+1-di=d,即a1,a2,…,an-1是等差数列.17.D2、D4[2022·全国卷]等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Sn.17.解:(1)设等差数列{an}的公差为d,-15-\n则an=a1+(n-1)d.因为所以解得a1=1,d=.所以{an}的通项公式为an=.(2)因为bn===-,所以Sn=-+-+…+-=.17.D2,D3[2022·福建卷]已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.17.解:(1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,所以a=1×(a1+2),即a-a1-2=0,解得a1=-1或a1=2.(2)因为数列{an}的公差d=1,且S5>a1a9,所以5a1+10>a+8a1,即a+3a1-10<0,解得-5<a1<2.17.D2,D3[2022·新课标全国卷Ⅱ]已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.17.解:(1)设{an}的公差为d.由题意,a=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=(a1+a3n-2)=(-6n+56)=-3n2+28n.20.D2[2022·山东卷]设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)若数列{bn}满足++…+=1-,n∈N*,求{bn}的前n项和Tn.20.解:(1)设等差数列{an}的首项为a1,公差为d.由S4=4S2,a2n=2an+1得-15-\n解得a1=1,d=2.因此an=2n-1,n∈N*.(2)由已知++…+=1-,n∈N*,当n=1时,=;当n≥2时,=1--=.所以=,n∈N*.由(1)知an=2n-1,n∈N*,所以bn=,n∈N*.又Tn=+++…+,Tn=++…++,两式相减得Tn=+-=--,所以Tn=3-.17.D2[2022·陕西卷]设Sn表示数列的前n项和.(1)若是等差数列,推导Sn的计算公式;(2)若a1=1,q≠0,且对所有正整数n,有Sn=.判断是否为等比数列,并证明你的结论.17.解:(1)方法一:设的公差为d,则Sn=a1+a2+…+an=a1+(a1+d)+…+[a1+(n-1)d],又Sn=an+(an-d)+…+[an-(n-1)d],∴2Sn=n(a1+an),∴Sn=.方法二:设的公差为d,则Sn=a1+a2+…+an=a1+(a1+d)+…+[a1+(n-1)d],又Sn=an+an-1+…+a1=[a1+(n-1)d]+[a1+(n-2)d]+…+a1,-15-\n∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]=2na1+n(n-1)d,∴Sn=na1+d.(2)是等比数列.证明如下:∵Sn=,∴an+1=Sn+1-Sn=-==qn.∵a1=1,q≠0,∴当n≥1时,有==q.因此,{an}是首项为1且公比为q的等比数列.16.D2,D3[2022·四川卷]在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.16.解:设该数列的公比为q,由已知,可得a1q-a1=2,4a1q=3a1+a1q2,所以,a1(q-1)=2,q2-4q+3=0,解得q=3或q=1.由于a1(q-1)=2,因此q=1不合题意,应舍去.故公比q=3,首项a1=1.所以,数列的前n项和Sn=.17.D2、D4[2022·新课标全国卷Ⅰ]已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n项和.17.解:(1)设{an}的公差为d,则Sn=na1+d.由已知可得解得a1=1,d=-1.故{an}的通项公式为an=2-n.(2)由(1)知==,数列的前n项和为=.19.D2[2022·浙江卷]在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.19.解:(1)由题意得5a3·a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn,因为d<0,由(1)得d=-1,an=-n+11,则-15-\n当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=16.D2和D3[2022·重庆卷]设数列{an}满足:a1=1,an+1=3an,n∈N+.(1)求{an}的通项公式及前n项和Sn;(2)已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.16.解:(1)由题设知{an}是首项为1,公比为3的等比数列,所以an=3n-1,Sn==(3n-1).(2)b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,所以公差d=5,故T20=20×3+×5=1010.12.D2[2022·重庆卷]若2,a,b,c,9成等差数列,则c-a=________.12. [解析]设公差为d,则d==,所以c-a=2d=.D3 等比数列及等比数列前n项和                   20.M2,D2,D3,D5[2022·北京卷]给定数列a1,a2,…,an,对i=1,2,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai-Bi.(1)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn-1是等比数列;(3)设d1,d2,…,dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列.20.解:(1)d1=2,d2=3,d3=6.(2)证明:因为a1>0,公比q>1,所以a1,a2,…,an是递增数列.因此,对i=1,2,…,n-1,Ai=ai,Bi=ai+1.于是对i=1,2,…,n-1,di=Ai-Bi=ai-ai+1=a1(1-q)qi-1.因此di≠0且=q(i=1,2,…,n-2),即d1,d2,…,dn-1是等比数列.-15-\n(3)证明:设d为d1,d2,…,dn-1的公差.对1≤i≤n-2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai.又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an-1是递增数列,因此Ai=ai(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<an-1.因此an=B1.所以B1=B2=…=Bn-1=an.所以ai=Ai=Bi+di=an+di.因此对i=1,2,…,n-2都有ai+1-ai=di+1-di=d,即a1,a2,…,an-1是等差数列.11.D3[2022·北京卷]若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________.11.2 2n+1-2 [解析]∵a3+a5=q(a2+a4),∴40=20q,∴q=2,∴a1(q+q3)=20,∴a1=2,∴Sn==2n+1-2.22.H6、H8、D3[2022·全国卷]已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.解:(1)由题设知=3,即=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,并求得x=±.由题设知,2=,解得a2=1.所以a=1,b=2.(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),|k|<2,代入①并化简得(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=,x1x2=.于是|AF1|===-(3x1+1),|BF1|===3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=-.故=-,解得k2=,从而x1x2=-.由于|AF2|===1-3x1,-15-\n|BF2|===3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.7.D3[2022·全国卷]已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于(  )A.-6(1-3-10)B.(1-310)C.3(1-3-10)D.3(1+3-10)7.C [解析]由3an+1+an=0,得an≠0(否则a2=0)且=-,所以数列{an}是公比为-的等比数列,代入a2可得a1=4,故S10==3×=3(1-3-10).17.D2,D3[2022·福建卷]已知等差数列{an}的公差d=1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.17.解:(1)因为数列{an}的公差d=1,且1,a1,a3成等比数列,所以a=1×(a1+2),即a-a1-2=0,解得a1=-1或a1=2.(2)因为数列{an}的公差d=1,且S5>a1a9,所以5a1+10>a+8a1,即a+3a1-10<0,解得-5<a1<2.11.D3[2022·广东卷]设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=________.11.15 [解析]方法一:易求得a2=-2,a3=4,a4=-8,∴a1+|a2|+a3+|a4|=15.方法二:相当于求首项为1,公比为2的等比数列的前4项和,S4==15.14.D3[2022·江苏卷]在正项等比数列{an}中,a5=,a6+a7=3.则满足a1+a2+…+an>a1a2…an的最大正整数n的值为________.14.12 [解析]设{an}的公比为q.由a5=及a5(q+q2)=3得q=2,所以a1=,所以a6=1,a1a2…a11=a=1,此时a1+a2+…+a11>1.又a1+a2+…+a12=27-,a1a2…a12=26<27-,所以a1a2…a12>a1a2…a12,但a1+a2+…+a13=28-,a1a2…a13=26·27=25·28>28-,所以a1+a2+…+a13<a1a2…a13,故最大正整数n的值为12.12.D3[2022·江西卷]-15-\n某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.12.6 [解析]Sn==2n+1-2≥100,得n≥6.14.D3[2022·辽宁卷]已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.14.63 [解析]由题意可知a1+a3=5,a1·a3=4.又因为{an}为递增的等比数列,所以a1=1,a3=4,则公比q=2,所以S6==63.17.D2,D3[2022·新课标全国卷Ⅱ]已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7+…+a3n-2.17.解:(1)设{an}的公差为d.由题意,a=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=(a1+a3n-2)=(-6n+56)=-3n2+28n.16.D2,D3[2022·四川卷]在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.16.解:设该数列的公比为q,由已知,可得a1q-a1=2,4a1q=3a1+a1q2,所以,a1(q-1)=2,q2-4q+3=0,解得q=3或q=1.由于a1(q-1)=2,因此q=1不合题意,应舍去.故公比q=3,首项a1=1.所以,数列的前n项和Sn=.6.D3[2022·新课标全国卷Ⅰ]设首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an6.D [解析]an=,Sn==31-an=3-2an.16.D2和D3[2022·重庆卷]设数列{an}满足:a1=1,an+1=3an,n∈N+.(1)求{an}的通项公式及前n项和Sn;-15-\n(2)已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.16.解:(1)由题设知{an}是首项为1,公比为3的等比数列,所以an=3n-1,Sn==(3n-1).(2)b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,所以公差d=5,故T20=20×3+×5=1010.D4 数列求和                   19.D2,D4[2022·安徽卷]设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′=0.(1)求数列{an}的通项公式;(2)若bn=2,求数列{bn}的前n项和Sn.19.解:(1)由题设可得,f′(x)=an-an+1+an+2-an+1sinx-an+2cosx.对任意n∈N*,f′=an-an+1+an+2-an+1=0,即an+1-an=an+2-an+1,故{an}为等差数列.由a1=2,a2+a4=8,解得{an}的公差d=1,所以an=2+1·(n-1)=n+1.(2)由bn=2an+=2=2n++2知,Sn=b1+b2+…+bn=2n+2·+=n2+3n+1-.17.D2、D4[2022·全国卷]等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Sn.17.解:(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.因为所以解得a1=1,d=.所以{an}的通项公式为an=.-15-\n(2)因为bn===-,所以Sn=-+-+…+-=.16.D4[2022·江西卷]正项数列{an}满足:a-(2n-1)an-2n=0.(1)求数列{an}的通项公式an;(2)令bn=,求数列{bn}的前n项和Tn.16.解:(1)由a-(2n-1)an-2n=0,得(an-2n)(an+1)=0.由于{an}是正项数列,所以an=2n.(2)由an=2n,bn=,则bn==,Tn===.17.D2、D4[2022·新课标全国卷Ⅰ]已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n项和.17.解:(1)设{an}的公差为d,则Sn=na1+d.由已知可得解得a1=1,d=-1.故{an}的通项公式为an=2-n.(2)由(1)知==,数列的前n项和为=.D5 单元综合                   20.M2,D2,D3,D5[2022·北京卷]给定数列a1,a2,…,an,对i=1,2,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai-Bi.(1)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn-1是等比数列;(3)设d1,d2,…,dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列.-15-\n20.解:(1)d1=2,d2=3,d3=6.(2)证明:因为a1>0,公比q>1,所以a1,a2,…,an是递增数列.因此,对i=1,2,…,n-1,Ai=ai,Bi=ai+1.于是对i=1,2,…,n-1,di=Ai-Bi=ai-ai+1=a1(1-q)qi-1.因此di≠0且=q(i=1,2,…,n-2),即d1,d2,…,dn-1是等比数列.(3)证明:设d为d1,d2,…,dn-1的公差.对1≤i≤n-2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai.又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an-1是递增数列,因此Ai=ai(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<an-1.因此an=B1.所以B1=B2=…=Bn-1=an.所以ai=Ai=Bi+di=an+di.因此对i=1,2,…,n-2都有ai+1-ai=di+1-di=d,即a1,a2,…,an-1是等差数列.19.D5,E9[2022·广东卷]设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a-4n-1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.19.解:19.D5[2022·湖北卷]已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{an}的通项公式;(2)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.19.解:(1)设数列{an}的公比为q,则a1≠0,q≠0.由题意得即解得故数列{an}的通项公式为an=3(-2)n-1.(2)由(1)有Sn==1-(-2)n.若存在n,使得Sn≥2013,则1-(-2)n≥2013,即(-2)n≤-2012.-15-\n当n为偶数时,(-2)n>0,上式不成立;当n为奇数时,(-2)n=-2n≤-2012,即2n≥2012,则n≥11.综上,存在符合条件的正整数n,且所有这样的n的集合为{n|n=2k+1,k∈N,k≥5}.15.D1,D5[2022·湖南卷]对于E={a1,a2,…,a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x1,x2,…,x100,其中xi1=xi2=…=xik=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0.(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为________.15.2 17 [解析](1)由特征数列的定义可知,子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E的子集P的“特征数列”p1,p2,…,p100满足p1=1,pi+pi+1=1,1≤i≤99”可知子集P的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98”可知子集Q的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P∩Q的元素为项数除以6余数为1的项,可知有a1,a7,a13,…,a97,共17项.19.D5[2022·江苏卷]设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项的和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.19.解:由题设,Sn=na+d.(1)由c=0,得bn==a+d.又因为b1,b2,b4成等比数列,所以b=b1b4,即=a,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有Sm=m2a.从而对于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk.(2)设数列{bn}的公差是d1,则bn=b1+(n-1)d1,即=b1+(n-1)d1,n∈N*,代入Sn的表达式,整理得,对于所有的n∈N*,有n3+n2+cd1n=c(d1-b1).令A=d1-d,B=b1-d1-a+d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D(*).在(*)式中分别取n=1,2,3,4,得A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,从而有-15-\n由②,③得A=0,cd1=-5B,代入方程①,得B=0,从而cd1=0.即d1-d=0,b1-d1-a+d=0,cd1=0.若d1=0,则由d1-d=0得d=0,与题设矛盾,所以d1≠0.又因为cd1=0,所以c=0.19.D5[2022·天津卷]已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.(1)求数列{an}的通项公式;(2)证明Sn+≤(n∈N*).19.解:(1)设等比数列{an}的公比为q,因为-2S2,S3,4S4成等差数列,所以S3+2S2=4S4-S3,即S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比数列{an}的通项公式为an=×-n-1=(-1)n-1·.(2)证明:Sn=1--n,Sn+=1--n+=当n为奇数时,Sn+随n的增大而减小,所以Sn+≤S1+=.当n为偶数时,Sn+随n的增大而减小,所以Sn+≤S2+=.故对于n∈N*,有Sn+≤.1.[2022·新乡期末]数列{an}中,a1=1,an=+1,则a4等于(  )A.B.C.1D.1.A [解析]由a1=1,an=+1得,a2=+1=2,a3=+1=+1=,a4=+1=+1=,选A.2.[2022·合肥联考]已知等差数列{an}的前n项和为Sn,a3+a8=13且S7=35,则a7=(  )A.11B.10C.9D.82.D [解析]由已知及等差数列的性质S7==7a4=35,所以a4=5,又a4-15-\n+a7=a3+a8=13,所以a7=8,选D.3.[2022·天津新华中学月考]设Sn是等差数列{an}的前n项和,S5=3(a2+a8),则的值为(  )A.B.C.D.3.D [解析]由S5=3(a2+a8)及等差数列的性质得=3×2a5,即5a3=6a5,所以=,选D.4.[2022·岳阳模拟]已知等比数列{an}的前n项和为Sn=3n+a,n∈N*,则实数a的值是(  )A.-3B.3C.-1D.14.C [解析]当n≥2时,an=Sn-Sn-1=3n-3n-1=2·3n-1;当n=1时,a1=S1=3+a,因为{an}是等比数列,所以有3+a=2,解得a=-1,选C.5.[2022·成都检测]已知等比数列{an}的前三项依次为a-1,a+1,a+4,则an=(  )A.4·()nB.4·()n-1C.4·()nD.4·()n-15.B [解析]因为数列{an}为等比数列,所以(a+1)2=(a-1)(a+4),解得a=5,即数列的前三项为4,6,9,公比为,所以an=a1qn-1=4·.6.[2022·昆明调研]公比不为1的等比数列{an}的前n项和为Sn,且-3a1,-a2,a3成等差数列,若a1=1,则S4=(  )A.-20B.0C.7D.406.A [解析]设数列的公比为q(q≠1),因为-3a1,-a2,a3成等差数列,所以-3a1+a3=-2a2,由于a1=1,所以-3+q2+2q=0,因为q≠1,所以q=-3.故S4=1-3+9-27=-20.-15-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:27:07 页数:15
价格:¥3 大小:77.05 KB
文章作者:U-336598

推荐特供

MORE