【科学备考】(新课标)2022高考数学二轮复习 第九章 平面解析几何 圆的方程 理(含2022试题)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
【科学备考】(新课标)2022高考数学二轮复习第九章平面解析几何圆的方程理(含2022试题)理数1.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5 B.+ C.7+ D.6 [答案]1.D[解析]1.设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|====≤5,故|PQ|max=5+=6.2.(2022山东潍坊高三3月模拟考试数学(理)试题,4)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为( ) (A) (B) (C) (D)[答案]2. D[解析]2. 根据圆C与y轴相切可设圆C的方程为,又圆C因为过点(1,0),(3,0),可得圆心在x=2上,得a=2,把点(1,0)代入圆的方程得b=,所以圆C的方程为.13\n3.(2022吉林实验中学高三年级第一次模拟,9)若抛物线的焦点是F,准线是,点M(4,4)是抛物线上一点,则经过点F、M且与相切的圆共有( )A.0个 B.1个 C.2个 D.4个[答案]3. C[解析]3. 焦点F的坐标为(1,0),准线为x=-1,由圆与相切可设圆的方程为:,则由题意可得①、②两式联立得,代入到①中消b得关于a的一元二次方程,此方程有两个实数根,由此可得此圆共有2个.4.(2022兰州高三第一次诊断考试,8)已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为( )A. B. C. D.[答案]4. C[解析]4. 依题意,,解得,,双曲线方程为.5.(2022重庆,10,5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是( )A. B. C. D.[答案]5.D[解析]5.以A为原点,AB1所在直线为x轴建立直角坐标系,如图所示.设B1(a,0),B2(0,b),O(m,n),则由已知得P(a,b).由||=||=1,||<,得(m-a)2+n2=1,m2+(n-b)2=1,(m-a)2+(n-b)2<,即-2am+a2=1-(m2+n2),-2nb+b2=1-(m2+n2),①13\nm2+n2-2am-2bn+a2+b2<,②①代入②中,得m2+n2+1-(m2+n2)+1-(m2+n2)<,即有m2+n2>,>.又||=||=1,相当于以O为圆心,半径为1的圆与x轴,y轴有交点,即有|m|≤1,|n|≤1,即m2+n2≤2,≤,故有||=∈,选D.6.(2022山东,9,5分)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0[答案]6.A[解析]6.如图,圆心坐标为C(1,0),易知A(1,1).又kAB·kPC=-1,且kPC==,∴kAB=-2.故直线AB的方程为y-1=-2(x-1),即2x+y-3=0,故选A.7.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________________.[答案]7.x2+(y-1)2=1[解析]7.根据题意得点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.8.(2022江西重点中学协作体高三第一次联考数学(理)试题,14)已知是上一动点,线段是的一条动直径(是直径的两端点),则的取值范围是__________________.[答案]8. [15,35][解析]8. 因为,又因为|AB|=2,所以①,又因为13\n,两边同时平方得 ②①②两式相加得,由①得,由圆的性质可得,所以的取值范围是[15,35].9.(2022年河南十所名校高三第二次联考,13,5分)圆-2x+my-2=0关于抛物线=4y的准线对称,则m=_____________[答案]9.2 [解析]9.抛物线=4y的准线方程为直线,由题意,圆心在直线上,所以,解得.10.(2022重庆,14,5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为 . [答案]10.5[解析]10.设外接圆的圆心为O,则AB是直径,O为AB的中点.连结OE,在Rt△ABC中,∠ABC=30°,又由CD与圆相切,得∠BCD=60°.又由BD⊥CD,得∠CBD=30°,所以∠OBD=60°,所以△OBE是等边三角形,BE=10.又可算得BD=15,则DE=15-10=5.11.(2022重庆,21,12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.13\n[答案]11.查看解析[解析]11.(Ⅰ)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|==c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(Ⅱ)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|.13\n由(Ⅰ)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2.又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.12.(2022山东青岛高三三月质量检测,22,13分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(Ⅰ)若,求外接圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.[答案]12.(Ⅰ)由题意知:,,又,解得.椭圆的方程为:.可得,,设,则,.,,即.由,或13\n即,或.①当的坐标为时,,外接圆是以为圆心,为半径的圆,即.②当的坐标为时,,,所以为直角三角形,其外接圆是以线段为直径的圆,圆心坐标为,半径为,外接圆的方程为综上可知,外接圆方程是,或.(Ⅱ)由题意可知直线的斜率存在.设,,,.由得,由得:(),即.结合()得,从而,13\n点在椭圆上,,整理得,即.,或.12.13.(2022重庆,21,12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P,P',过P,P'作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.[答案]13.(Ⅰ)由题意知点A(-c,2)在椭圆上,则+=1,从而e2+=1.由e=得b2==8,从而a2==16.故该椭圆的标准方程为+=1.(Ⅱ)由椭圆的对称性,可设Q(x0,0).又设M(x,y)是椭圆上任意一点,则|QM|2=(x-x0)2+y2=x2-2x0x++8=(x-2x0)2-+8(x∈[-4,4]).设P(x1,y1),由题意,P是椭圆上到Q的距离最小的点,因此,上式当x=x1时取最小值,又因x1∈(-4,4),所以上式当x=2x0时取最小值,从而x1=2x0,且|QP|2=8-.因为PQ⊥P'Q,且P'(x1,-y1),所以·=(x1-x0,y1)·(x1-x0,-y1)=0,即(x1-x0)2-=0.由椭圆方程及x1=2x0得-8=0,13\n解得x1=±,x0==±.从而|QP|2=8-=.故这样的圆有两个,其标准方程分别为+y2=,+y2=.13.14.(2022湖南,21,13分)过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:·<2p2;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.[答案]14.(Ⅰ)由题意,抛物线E的焦点为F,直线l1的方程为y=k1x+.由得x2-2pk1x-p2=0.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,y1+y2=k1(x1+x2)+p=2p+p.所以点M的坐标为,=(pk1,p).同理可得点N的坐标为,=(pk2,p),于是·=p2(k1k2+).由题设,k1+k2=2,k1>0,k2>0,k1≠k2,所以0<k1k2<=1.故·<p2(1+12)=2p2.(Ⅱ)由抛物线的定义得|FA|=y1+,|FB|=y2+,所以|AB|=y1+y2+p=2p+2p,从而圆M的半径r1=p+p.13\n故圆M的方程为(x-pk1)2+=(p+p)2,化简得x2+y2-2pk1x-p(2+1)y-p2=0.同理可得圆N的方程为x2+y2-2pk2x-p(2+1)y-p2=0.于是圆M,圆N的公共弦所在直线l的方程为(k2-k1)x+(-)y=0.又k2-k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离d===.故当k1=-时,d取最小值.由题设,=,解得p=8.故所求的抛物线E的方程为x2=16y.14.15.(2022浙江,21,15分)如图,点P(0,-1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(Ⅰ)求椭圆C1的方程;(Ⅱ)求△ABD面积取最大值时直线l1的方程.[答案]15.(Ⅰ)由题意得所以椭圆C的方程为+y2=1.(Ⅱ)设A(x1,y1),B(x2,y2),D(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线13\nl1的方程为y=kx-1.又圆C2:x2+y2=4,故点O到直线l1的距离d=,所以|AB|=2=2.又l2⊥l1,故直线l2的方程为x+ky+k=0.由消去y,整理得(4+k2)x2+8kx=0,故x0=-.所以|PD|=.设△ABD的面积为S,则S=|AB|·|PD|=,所以S=≤=,当且仅当k=±时取等号.所以所求直线l1的方程为y=±x-1.15.16.(2022江苏,17,14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.13\n[答案]16.(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以点C的横坐标a的取值范围为.16.17.(2022课标Ⅰ,20,12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.[答案]17.由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(Ⅰ)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左13\n顶点除外),其方程为+=1(x≠-2).(Ⅱ)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.17.13
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)