首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第24练 常考的递推公式问题的破解方略
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第24练 常考的递推公式问题的破解方略
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第24练 常考的递推公式问题的破解方略题型一 由相邻两项关系式求通项公式例1 已知正项数列{an}满足a1=1,(n+2)a-(n+1)a+anan+1=0,则它的通项公式为________.破题切入点 对条件因式分解.答案 an=解析 由(n+2)a-(n+1)a+anan+1=0,得[(n+2)an+1-(n+1)an](an+1+an)=0,又an>0,所以(n+2)an+1=(n+1)an,即=,an+1=an,所以an=··…·a1=a1(n≥2),所以an=(n=1适合),于是所求通项公式为an=.题型二 已知多项间的递推关系求通项公式例2 已知数列{an}满足a1=,anan-1=an-1-an,则数列{an}的通项公式为________.破题切入点 求证{-}为等差数列,再利用累加法求得,便可求得an.答案 an=解析 ∵anan-1=an-1-an,∴-=1.∴=+++…+=2+1+1+…+=n+1.∴=n+1,∴an=.题型三 构造法求通项公式例3 (1)已知a1=1,an+1=2an+1,求an;(2)已知a1=1,an+1=,求an.破题切入点 观察条件,联想学过的数列来构造.解 (1)由an+1=2an+1得an+1+1=2(an+1),又a1+1=2≠0,于是可知{an+1}为以2为首项2为公比的等比数列.即an+1=2n,∴an=2n-1,∴所求通项公式为an=2n-1.-7-\n(2)由an+1=得-=1(常数),又=1,∴{}为1为首项,1为公差的等差数列,∴=n,从而an=,即所求通项公式为an=.总结提高 求数列通项公式常见的方法:(1)观察法:利用递推关系写出前n项,根据前n项的特点观察,归纳猜想出an的表达式,然后用数学归纳法证明.(2)利用前n项和与通项的关系an=(3)在已知数列{an}中,满足an+1-an=f(n)且f(1)+f(2)+…+f(n)可求,则可用累加法求数列的通项an.(4)在已知数列{an}中,满足=f(n)且f(1)·f(2)·…·f(n)可求,则可用累乘法求数列的通项an.(5)将递推关系进行变换,转化为常见数列(等差、等比数列).1.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则的值是________.答案 解析 由已知得a2=1+(-1)2=2,∴a3·a2=a2+(-1)3,∴a3=,∴a4=+(-1)4,∴a4=3,∴3a5=3+(-1)5,∴a5=,∴=×=.2.学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A种菜.用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的人数,如果a1=300,则a10=________.答案 300解析 依题意,得消去bn,得an+1=an+150.由a1=300,得a2=300;由a2=300,得a3=300;……从而得a10=300.-7-\n3.已知f(x)=log2+1,an=f()+f()+…+f(),n为正整数,则a2015=________.答案 2014解析 因为f(x)=log2+1,所以f(x)+f(1-x)=log2+1+log2+1=2.所以f()+f()=2,f()+f()=2,…,f()+f()=2,由倒序相加,得2an=2(n-1),an=n-1,所以a2015=2015-1=2014.4.在正项数列{an}中,a1=2,an+1=2an+3×5n,则数列{an}的通项公式为________.答案 an=5n-3×2n-1解析 在递推公式an+1=2an+3×5n的两边同时除以5n+1,得=×+,①令=bn,则①式变为bn+1=bn+,即bn+1-1=(bn-1),所以数列{bn-1}是等比数列,其首项为b1-1=-1=-,公比为.所以bn-1=(-)×()n-1,即bn=1-×()n-1=,故an=5n-3×2n-1.5.数列{an}的前n项和Sn满足2SnSn-1=an(n≥2,n∈N*),且a1=1,则数列{an}的通项公式为________.答案 an=解析 当n≥2时,an=Sn-Sn-1,则2SnSn-1=Sn-Sn-1,即-=-2,又==1,-7-\n故{}是首项为1,公差为-2的等差数列,则=1+(n-1)(-2)=-2n+3,所以Sn=.当n≥2时,an=Sn-Sn-1=-=,验证a1=1不满足,故所求通项公式an=6.设函数f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=,数列{an}满足f(1)=n2an(n∈N*),则数列{an}的通项an=________.答案 解析 由f(0)=,得a1=,由f(1)=n2an(n∈N*),得Sn=a1+a2+…+an=n2an.当n≥2时,an=Sn-Sn-1=n2an-(n-1)2an-1,整理得=,所以an=a1×××…×=××××…×=,显然a1=也符合.即{an}的通项为an=.7.若f(n)为n2+1(n∈N*)的各位数字之和,如62+1=37,f(6)=3+7=10,f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2014(4)=________.答案 8解析 因为42+1=17,f(4)=1+7=8,则f1(4)=f(4)=8,f2(4)=f(f1(4))=f(8)=11,f3(4)=f(f2(4))=f(11)=5,f4(4)=f(f3(4))=f(5)=8,…,所以fk+1(n)=f(fk(n))为周期数列.可得f2014(4)=8.-7-\n8.数列{an},{bn}满足an=lnn,bn=,则数列{an·bn}中第________项最大.答案 3解析 设函数f(x)=lnx,则f′(x)=,令f′(x)=0,得x=e.分析知函数f(x)在(0,e]上是增函数,在[e,+∞)上是减函数,又f(2)=ln2=ln<f(3)=ln3=ln,所以an·bn=lnn(n∈N*)在n=3时取得最大值,即数列{an·bn}中第3项最大.9.对于正项数列{an},定义Hn=为{an}的“光阴”值,现知某数列的“光阴”值为Hn=,则数列{an}的通项公式为________.答案 an=解析 由Hn=可得a1+2a2+3a3+…+nan==,①a1+2a2+3a3+…+(n-1)an-1=②①-②得nan=-=,所以an=.10.(2022·课标全国Ⅱ)数列{an}满足an+1=,a8=2,则a1=________.答案 解析 ∵an+1=,∴an+1=====1-=1-=1-(1-an-2)=an-2,∴周期T=(n+1)-(n-2)=3.∴a8=a3×2+2=a2=2.-7-\n而a2=,∴a1=.11.(2022·大纲全国)数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.(1)设bn=an+1-an,证明{bn}是等差数列;(2)求{an}的通项公式.(1)证明 由an+2=2an+1-an+2,得an+2-an+1=an+1-an+2,即bn+1=bn+2.又b1=a2-a1=1,所以{bn}是首项为1,公差为2的等差数列.(2)解 由(1)得bn=1+2(n-1)=2n-1,即an+1-an=2n-1.于是(ak+1-ak)=(2k-1),所以an+1-a1=n2,即an+1=n2+a1.又a1=1,所以{an}的通项公式为an=n2-2n+2.12.(2022·湖南)已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.(1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.解 (1)因为{an}是递增数列,所以an+1-an=|an+1-an|=pn.而a1=1,因此a2=p+1,a3=p2+p+1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=,p=0.当p=0时,an+1=an,这与{an}是递增数列矛盾.故p=.(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①但<,所以|a2n+1-a2n|<|a2n-a2n-1|.②由①②知,a2n-a2n-1>0,因此a2n-a2n-1=()2n-1=.③因为{a2n}是递减数列,同理可得a2n+1-a2n<0,故a2n+1-a2n=-()2n=.④由③④可知,an+1-an=.于是an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)-7-\n=1+-+…+=1+·=+·.故数列{an}的通项公式为an=+·.-7-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
全国通用2022版高考数学考前三个月复习冲刺专题5第23练常考的递推公式问题的破解方略理
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第17练 存在与恒成立问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第16练 导数的综合应用
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第13练 高考对于导数几何意义的必会题型
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第11练 寻图有道,破解有方 函数的图象问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题6 立体几何 第27练 完美破解立体几何证明题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题6 立体几何 第26练 立体几何中的计算问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第25练 数列求和问题大全
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第23练 基本量 破解等差、等比数列的法宝
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题1 集合与常用逻辑用语 第2练 常用逻辑用语中的“常考题型”
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:16:18
页数:7
价格:¥3
大小:58.62 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划