首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题6 立体几何 第26练 立体几何中的计算问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题6 立体几何 第26练 立体几何中的计算问题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第26练 立体几何中的计算问题题型一 立体几何中的表面积、体积计算例1 已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则三棱锥S—ABC的体积为________.破题切入点 作出图形,可知三棱锥S-ABC的体积是两个三棱锥之和,通过三角形的边角关系,计算可得所求.答案 解析 如图,过A作AD垂直SC于D,连结BD.由于SC是球的直径,所以∠SAC=∠SBC=90°,又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以VS—ABC=VS—ABD+VC—ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2,由于AD==.同理在Rt△BSC中也有BD==.又AB=,所以△ABD为正三角形,所以VS—ABC=S△ABD·SC=××()2·sin60°×4=.题型二 立体几何中的长度、距离的计算例2 已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.破题切入点 作出图形,关键是找到球心的位置.答案 -7-\n解析 如图,作PM⊥面ABC,设PA=a,则AB=a,CM=a,PM=a.设球的半径为R,所以2+2=R2,将R=代入上式,解得a=2,所以d=-=.总结提高 (1)立体几何中有关表面积体积的计算首先要熟悉几何体的特征,其次运用好公式,作好辅助线等.(2)立体几何中有关长度和距离的求解要准确灵活转化,计算距离时要注意垂直距离如何找到,有时利用等体积的方法.1.(2022·大纲全国改编)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为________.答案 解析 如图,设球心为O,半径为r,则Rt△AOF中,(4-r)2+()2=r2,解得r=,所以,该球的表面积为4πr2=4π×()2=π.2.(2022·福建改编)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积为________.答案 2π解析 以正方形的一边所在直线为轴旋转得到的圆柱底面半径r=1,高h=1,所以侧面积S=2πrh=2π.3.(2022·辽宁改编)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为________.答案 解析 因为AB⊥AC,且AA1⊥底面ABC,将直三棱柱补成内接于球的长方体,则长方体的对角线l==2R,R=.-7-\n4.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.答案 π解析 侧面展开图扇形的半径为2,圆锥底面半径为1,∴h==,∴V=π×1×=π.5.如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.答案 平行解析 取PD的中点F,连结EF,在△PCD中,EF綊CD.又∵AB∥CD且CD=2AB,∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.又∵EB⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.6.已知两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和球O2的表面积之和的最小值为________.答案 (6-3)π解析 设球O1,O2的半径分别为r1,r2,由题意知O1A+O1O2+O2C1=,而O1A=r1,O1O2=r1+r2,O2C1=r2,∵r1+r1+r2+r2=.∴r1+r2=,从而S1+S2=4πr+4πr=4π(r+r)≥4π·=(6-3)π.-7-\n7.如图,正方体ABCD—A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为______.答案 解析 在正方体ABCD—A1B1C1D1中,AB=2,∴AC=2.又E为AD的中点,EF∥平面AB1C,EF⊂平面ADC,平面ADC∩平面AB1C=AC,∴EF∥AC,∴F为DC的中点,∴EF=AC=.8.(2022·江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是________.答案 解析 设两个圆柱的底面半径和高分别为r1,r2和h1,h2,由=,得=,则=.由圆柱的侧面积相等,得2πr1h1=2πr2h2,即r1h1=r2h2,所以===.9.已知三棱锥A—BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.答案 3π解析 如图,构造正方体ANDM—FBEC.因为三棱锥A—BCD的所有棱长都为,所以正方体ANDM—FBEC的棱长为1.所以该正方体的外接球的半径为.易知三棱锥A—BCD的外接球就是正方体ANDM—FBEC的外接球,所以三棱锥A—BCD的外接球的半径为.所以三棱锥A—BCD的外接球的表面积为S球=4π2=3π.10.(2022·安徽)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).-7-\n①当0<CQ<时,S为四边形;②当CQ=时,S为等腰梯形;③当CQ=时,S与C1D1的交点R满足C1R=;④当<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为.答案 ①②③⑤解析 ①当0<CQ<时,如图(1).在平面AA1D1D内,作AE∥PQ,显然E在棱DD1上,连结EQ,则S是四边形APQE.②当CQ=时,如图(2).显然PQ∥BC1∥AD1,连结D1Q,则S是等腰梯形.③当CQ=时,如图(3).作BF∥PQ交CC1的延长线于点F,则C1F=.作AE∥BF,交DD1的延长线于点E,D1E=,AE∥PQ,连结EQ交C1D1于点R,∵Rt△RC1Q∽Rt△RD1E,∴C1Q∶D1E=C1R∶RD1=1∶2,∴C1R=.-7-\n④当<CQ<1时,如图(3),连结RM(点M为AE与A1D1交点),显然S为五边形APQRM.⑤当CQ=1时,如图(4).同③可作AE∥PQ交DD1的延长线于点E,交A1D1于点M,显然点M为A1D1的中点,∴S为菱形APQM,其面积为MP×AQ=××=.11.已知一个圆锥的底面半径为R,高为H,在其内部有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?解 (1)作圆锥的轴截面,如图所示.设内接圆柱的半径为r.因为=,所以r=R-x,所以S圆柱侧=2πrx=2πRx-x2(0<x<H).(2)因为-<0,所以当x==时,S圆柱侧最大.故当x=,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.-7-\n12.(2022·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明 在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1,又因为AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明 取AB的中点G,连结EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)解 因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥E-ABC的体积V=S△ABC·AA1=×××1×2=.-7-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第17练 存在与恒成立问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第16练 导数的综合应用
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第13练 高考对于导数几何意义的必会题型
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第34练 圆锥曲线中的探索性问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第33练 直线与圆锥曲线问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第29练 与直线和圆有关的最值问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题6 立体几何 第27练 完美破解立体几何证明题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第25练 数列求和问题大全
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第24练 常考的递推公式问题的破解方略
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第6练 处理好“线性规划问题”的规划
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:16:17
页数:7
价格:¥3
大小:332.73 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划